Preprint. Under Review.

LET’S THINK IN TWO STEPS: MITIGATING AGREEMENT BIAS IN
MLLMS WITH SELF-GROUNDED VERIFICATION

Moises Andrade Joonhyuk Cha Brandon Ho Vriksha Srihari Karmesh Yadav Zsolt Kira
Georgia Institute of Technology
{mandrade, jcha, bho36, vriksha.srihari, kyadav32, zkira}@gatech.edu

ABSTRACT

Verifiers—functions assigning rewards to agent behavior—have been key for Al
progress in domains such as math, code and games. However, extending these gains
to domains without clear-cut success criteria (e.g., computer use) remains a chal-
lenge: while humans can recognize desired outcomes, translating this intuition into
scalable rules is nontrivial. Multimodal Large Language Models (MLLMs) emerge
as a promising solution, given their world knowledge, human-preference alignment,
and reasoning skills. We evaluate MLLMs as verifiers of agent trajectories across
web navigation, computer use, and robotic manipulation, and identify a critical
limitation: a strong tendency to over-validate agent behavior, a phenomenon we
call agreement bias. We show that agreement bias is pervasive across models, is re-
silient to test-time scaling, and can affect existing methods relying on MLLM-based
evaluations. We discuss metrics to measure and methods to mitigate this bias, and
introduce Self-Grounded Verification (SGV), a lightweight method that harnesses
MLLMSs’ own sampling mechanisms by modulating (un)conditional generation to
better leverage their knowledge, alignment, and reasoning. SGV operates in two
steps: first, the MLLM is elicited to generate broad priors about desired agent behav-
ior, independent of the data under evaluation. Then, conditioned on self-generated
priors, it reasons over and evaluates a candidate trajectory. SGV yields more human-
aligned evaluations, improving verification across models, metrics, and benchmarks,
with gains of up to 25 pp in failure identification, 14 pp in accuracy, and benefits
extending to downstream applications. In self-refinement and online supervision,
SGV boosts task completion of a GUI specialist in OSWorld, a diffusion policy in
robomimic, and a ReAct agent in VisualWebArena—setting a new state of the art,
surpassing the previous best by 20pp. Finally, we quantitatively analyze and provide
practical guidance on several design choices for MLLM verifiers, and release an up-
dated version of VisualWebArena featuring more human-aligned evaluators, strong
agent baselines, environment parallelism with improved execution fidelity, and
runtime speedups of over 10x. All code and data are publicly available at this link.

1 INTRODUCTION

Several breakthroughs in artificial intelligence can be viewed through the lens of search guided
by verifiers—functions assigning rewards to agent behavior aligned with desired criteria. Notable
examples include seminal work in Go (Campbell et al., 2002) and Chess (Silver et al.l[2017), where
search and learning are guided by 0/1 rewards tied to the game’s final outcome, and recent advance-
ments in large reasoning models (LRMs), leveraging formal verifiers in code and math (Shao et al.|
2024b). Reinforcing this perspective, recent work highlights the central role of verifiers in problems
characterized by a verifier-generator gap (Setlur et al.,2025;|Chu et al., |2025; Swamy et al., 2025).

However, while domains such as math, code, and games benefit from relatively well-defined criteria to
evaluate agent behavior, this clarity diminishes in open-ended settings. Evaluation in such scenarios
often requires nuanced criteria and reasoning over possibly long sequences of multimodal inputs.
For example, consider evaluating the trajectory in Fig. [I] (top) produced by a digital agent asked to
“add the least expensive opaque case for a mobile phone to a shopping cart”. Should the agent sort
products by price? Perform an advanced search? Inspect product details to confirm attributes? What
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is “opaque enough”? Although humans can often recognize satisfactory outcomes, formalizing this
intuition into precise and scalable rules remains a challenge.

Multimodal Large Language Models (MLLMs) emerge as a promising solution to bridge this gap.
With vast world knowledge, human-preference alignment, and large context windows, MLLMs hold
the potential to serve as general-purpose verifiers, capable of handling inputs and producing rewards
in multiple modalities. In this work, we probe this potential through a comprehensive study of MLLM
verifiers on open-ended tasks, spanning diverse environments, agent architectures, state-of-the-art
MLLMs and LRMs, established test-time scaling techniques, and multiple evaluation templates,
settings, and metrics. We consider web, desktop, and robotic environments—VisualWebArena (Koh
et al.,[2024a), OSWorld (Xie et al.|[2024), and robomimic (Mandlekar et al.|[2021)—covering roughly
1,300 tasks across varied domains, where verification demands nuanced criteria and multimodal
reasoning, providing a compelling testbed for studying MLLM verifiers.

However, we identify a systematic and critical limitation for MLLMs as verifiers: a strong tendency to
over-validate agent behavior, a phenomenon we call agreement bias. As shown in Fig. [1|(middle), an
MLLM verifier validates flawed behavior and even generates chains-of-thought (CoT) to rationalize
incorrect judgments. This bias limits MLLMs’ ability to fulfill a core function of a verifier—
identifying flawed behavior and providing feedback to improve performance—posing risks to methods
that rely on MLLM-based evaluations. In particular, it can limit MLLMs’ effectiveness as data
curators for fine-tuning and test-time refinements (Trabucco et al.,[2025a; Pan et al., [2024a} [Wang
et al.| {2024} Yu et al.; 2025} [Shinn et al., 2023)); as providers of rewards for training, search, and agent
steering (Pan et al., 2024b; [Koh et al.,[2024b; [Sun et al., 2025} |Bai et al.,|2024)); and as judges (Chen
et al.,2024; Lee et al.l 2024;|Zheng et al.,|2023) and monitors (Baker et al., [2025) of agent behavior,
where failure detection is essential for balanced assessments and to prevent harmful outcomes.

Notably, such failures occur despite MLLMs exhibiting strong, human-aligned priors about desired
behavior, suggesting a bottleneck in knowledge extraction—potentially rooted in fundamental limi-
tations in pretraining (Allen-Zhu and Li, 2024bja) and RLHF (Sharma et al.,2025)—that remains
unresolved by major test-time scaling techniques and training for reasoning. To address this, we pro-
pose Self-Grounded Verification (SGV), a simple yet effective method that harnesses MLLMs’ own
sampling mechanisms by modulating (un)conditional generation to better leverage their knowledge,
alignment, and reasoning (Fig. [I] bottom). SGV operates in two steps: first, an MLLM is elicited to
produce broad priors about desired behavior, conditioned only on the necessary context to frame the
task. Then, conditioned on self-generated priors, the model reasons over and evaluates a candidate
trajectory. SGV significantly improves MLLM verification while adding minimal token overhead and
integrating seamlessly into pipelines that rely on MLLM evaluations.

To assess the benefits and risks of MLLM verifiers, as well as the effectiveness of SGV, we evaluate
performance across three representative settings: offline evaluation of agent performance and two
downstream applications—online supervision and self-refinement via Reflexion(Shinn et al.| [2023).
Our findings and contributions can be summarized as follows:

» Agreement bias manifests in several quantitative metrics, including a high ratio of false-positive
evaluations, MLLM responses skewed toward favorable judgments, and a low (sometimes below
50%) probability of detecting failures.

* The inability to identify flawed behavior adversely impacts methods that rely on MLLMs in
evaluative roles. We show that MLLM verifiers can produce low-quality data for behavior cloning
and ineffective feedback for self-refinement and online supervision.

* SGV improves verification across multiple metrics, models, environments, and agents, yielding
gains of up to 25 pp in failure identification, 14 pp in accuracy, and evaluations more aligned to
human judgments, with corresponding benefits in downstream applications.

* SGYV enables agents to self-improve, yielding gains of up to 10 pp (24% relative) in task completion
on VisualWebArena. In online supervision, SGV encourages agents to backtrack and avoid greedy
strategies, yielding gains of 9 pp (20%) for a ReAct agent on VisualWebArena, 5 pp (22%) for the
GUI-Specialist UI-TARS (Qin et al.| [2025)) on OSWorld, and 8 pp (33%) for a diffusion policy on
robomimic’s tool-hang task. Notably, our agents set a new state of the art on VisualWebArena,
outperforming the previous best by 20 pp while introducing a lower token overhead.



Preprint. Under Review.

» We offer guidance on research on Al agents and verification, discussing the limitations of rule-based
evaluations, the benefits and risks of using MLLMs as alternatives, and several quantitative metrics
and design choice ablations that can inform general practice.

* Asabyproduct of our work, we release an updated version of (Visual)WebArena with improvements
to facilitate prototyping and research: more human-aligned evaluators, environment parallelization
with higher execution fidelity, runtime speedups exceeding 10x, and VisualWebArena-Lite, a
1/3-scale subset with comparable evaluation fidelity.

figures/main_figure_reduced.pdf

Figure 1: Top: example of a web task and corresponding agent trajectory. Middle: an MLLM verifier validates
and reinforces flawed agent behavior, generating reasoning to rationalize incorrect judgments. Bottom: SGV
leads to more accurate verification and enables the agent to backtrack.

2 RELATED WORK

MLLMs as Evaluators. (M)LLMs have been employed as evaluators of model outputs in various
scenarios under various names—(M)LLMs as judges, critics, reward models, value functions. This
work focuses on multimodal and environment-interaction scenarios. MLLMs have been used to score
and filter agent trajectories for subsequent use in finetuning (Trabucco et al.,[2025bj |Pan et al.| [2024aj
Ma et al.,|2024)), and test-time refinements such as to induce prompts, reflections, and tools (Wang
et al.}[2024; Yu et al.} [2025; |Shinn et al., 2023} [Sarch et al., 2025). They have also served as a source of
real-time feedback by producing natural language “critiques” (Pan et al.,[2024b)), scores to rank action
proposals in search (Koh et al., [2024¢; [ Yang et al., [2025)), and rewards for training (Sun et al.; 2025).

AI Agents. There is growing interest in building AI agents to act in various environments, including
the web (Koh et al., 2024a), mobile phones (Li et al.,|2024)), and computers (Liu et al., 2023). In this
field, the work most closely related to ours is|Pan et al.|(2024al), which uses a GPT-4V-based evaluator,
prompted with benchmark-specific rubrics, to evaluate trajectories for Reflexion (Shinn et al., [2023)
and behavior cloning. Following works employ a similar evaluator to guide tree search (Yu et al.,
2024; |[Koh et al.| 2024b), filter trajectories to generate text-based memories or tools (Wang et al.|
2024; Yu et al., [2024; [Sarch et al.| 2025) to boost agent performance in (Visual)WebArena (Zhou
et al.,[2023; |[Koh et al., 2024a), and for RL training in simpler environments (Bai et al., [2024)).
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Test-time scaling (TTS) has emerged as a major paradigm to improve model performance without
increasing parameters (Snell et al., 2024; Welleck et al.| 2024). Early work (Wei et al., [2022; Kojima.
et al.| 2022)) demonstrates that prompting LLMs to generate intermediate “chains-of-thought” leads
to substantial gains in reasoning-oriented tasks. Orthogonal approaches scale test-time compute
through sampling and search (Zhang et al., 2024} |Yao et al) 2023aj Hao et al., 2023), where
multiple generations are selected through heuristics (Brown et al., 2024; |Wang et al., [2022) or
reward models (Shao et al., [2024a} |[Lightman et al.| [2023). Recent work leverages sampling, RL,
and formal verifiers to train (M)LLMs that autonomously generate reasoning traces (DeepSeek-Al,
2025} |OpenAl} 2024; |[Kimi Team), 2025} |Gemini Team), 2025)), achieving strong results in challenging
benchmarks. Extending these methods to open-ended problems requires flexible and multimodal
verification, for which MLLMs offer an appealing solution.

Compared to this body of work, we 1) Unify applications of MLLM evaluators based on their use
of multimodal rewards derived from MLLM verifiers; 2) Evaluate MLLM verifiers on multimodal
settings across a broad range of models, benchmarks, agents, TTS techniques, evaluation templates,
and applications; 3) Dissect MLLM verifier performance over several fine-grained metrics, offering
guidance on how to measure the quality of their evaluations and artifacts derived from them; 4)
Identify agreement bias, show its resilience to TTS techniques, and the risks it imposes for downstream
applications; 5) Discuss strategies to improve MLLM verification and introduce SGV, a simple yet
effective method that can be easily integrated into pipelines involving MLLM verifiers; 6) Show that
SGV improves MLLM verification with benefits extending to downstream applications such as online
supervision and self-refinement, achieving a new state of the art on VisualWebArena.

3 PROBLEM SETUP

3.1 PRELIMINARIES AND DEFINITIONS

Agents and Multimodal Verifiers. Our goal is to study functions that approximate human judgment
of agent behavior in interactive environments. Specifically, an agent is tasked to complete a task ¢ € Q
through a series of actions a;. Given a history of environment states s,.+ = [S, ..., S¢], the agent ex-
ecutes an action sampled from a policy 7: a; = 7(s,.¢, q), leading to a new state s;11. The repetition
of this process yields a trajectory 7,..: = (S, ar,. .., St, a;) that, along with the task g, serves as the
basis for evaluating agent performance. To evaluate trajectory-task pairs (g, 7. ), humans process and
produce information in multiple modalities, motivating our definition of a verifier and the scope of
tasks considered. We define a multimodal verifier as a functionr : 7 x Q - Rx (VU {0}),r € R,
that maps trajectory-task pairs to rewards consisting of a real-valued score and optional outputs in
other modalities from V. These multimodal aspects are reflected in our settings. A task g can be
represented as images, text, or both, states s; as screenshots or DOM trees, actions a; as text (e.g.
<type opaque phone>) or images from URLS, and verifier outputs as 0/1 scalars or natural language.

Oracle Verifiers. In the benchmarks we study, instantiations of r are obtained via human-written
scripts that have privileged access to task and environment states, which we refer to as oracle
verifiers. They produce 0/1 rewards reflecting task completion, which we treat as aligned with human
judgments. These functions, however, are not perfect, and we discuss limitations in Secs. @] and E}

Applications of Verifiers. To characterize the potential benefits and risks of MLLM verifiers, we
unify the view of several applications by how they use r and are therefore affected by its quality,
categorizing them into offline and online settings. The offline setting covers cases where 7 is applied to
trajectories post hoc. A canonical example of agent performance evaluation, where r maps trajectories
to scores reflecting task completion. Composite applications include methods that use 7 to improve
the agent’s subsequent performance, such as filtering successful trajectories for finetuning (Pan
et al., 2024a; Ma et al., [2024), as well as variants of Reflexion, where prior trajectories are used
to induce prompts, memories, and reflections (Shinn et al.l 2023} [Sarch et al.l 2025 Yu et al.|
2025)), and tools (Wang et al., 2024; 2023)). The online setting covers cases where 7 is used to
influence policy distribution during execution. Applications include online supervision, where r
maps trajectories to scalars or text rewards to steer agents toward task completion and possibly
update policy parameters (Bai et al., 2024} [Wu et al.| |2025)), as well as using r to rank samples of
trajectory-action pairs to guide (tree) search (Koh et al.,[2024b; Zhou et al.| 2024).
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3.2 MLLM VERIFIERS, AGREEMENT BIAS, AND SELF-GROUNDED VERIFICATION

Human and scripted evaluation for open-ended tasks is hard to scale, motivating the use of MLLMs
as an alternative. The conventional approach to obtain r with an MLLM is to prompt it with the task
q, trajectory 7.4, and additional context C' that can include rubrics for evaluation and instructions for
reasoning steps:

ravrea (g, 7, C) = h([TiZ, P(yi | y<i, q, 7, C))

where y = y1,...,y, are MLLM outputs, and h is a function mapping them to rewards—e.g., a
regex that maps model completions to 0/1 scores or natural language feedback.

However, this approach is subject to a failure mode we call agreement bias (Figs.[7] [§]and [T0): a
tendency to over-validate agent behavior, judging flawed trajectories as aligned with the task g despite
the use of carefully crafted instructions C', established test-time scaling techniques, and decoding
algorithms. This bias degrades the quality of 7/ 1 a7, and can negatively impact several applications
relying directly or indirectly on 757170 (Sec.[3.).

Notably, this bias occurs despite models exhibiting strong, human-aligned priors on desired agent
behavior—e.g., first-step generations in Figs. [T]and [7—suggesting a bottleneck in knowledge extrac-
tion not resolved with major techniques to elicit reasoning, nor in models explicitly trained to produce
intermediate reasoning steps. This observation aligns with findings in LLM interpretability, indicating
that the way a transformer’s knowledge is embedded within its parameters can hinder extraction
depending on how the information is presented (Allen-Zhu and Li,2024ab), and that inherent limita-
tions of RLHF can make models conflate human rater satisfaction with truthfulness (Sharma et al.|
2025). Addressing this challenge by modifying pretraining corpora, training recipes, or retraining
large models remains both unclear and costly, highlighting the need for alternative solutions.

Motivated by this, we propose Self-Grounded Verification (SGV) (Fig. [l|(middle)), a simple yet
effective method that substantially improves the performance of MLLM verifiers. SGV operates in
two steps: first, the MLLM is elicited to extract broad priors k, associated with successful completion
of the task ¢, conditioned only on the data needed to frame the task:

]Acq = g(H;n:l P(y’b ‘ y<’ia SOItv 07 q))

where sg.; are states needed to define the task (e.g., an initial screenshot) and g is a function to
select a completion. In the second step, the MLLM evaluates the trajectory conditioned on the priors
generated in the first step:

TSGV(Tt7C7 q) = h’(H?:l P(yz | Y<ir 4, Tt, C7 EQ))

Intuitively, by modulating (un)conditional generation, SGV harnesses MLLMs’ own sampling mech-
anisms to enable more effective use of their knowledge, alignment, and reasoning capabilities. Condi-
tioning only on essential information in the first step encourages the model to explore its probability
distribution freely, extracting knowledge pertinent to the task at hand and independent of the data under
evaluation. In the second step, the MLLM evaluates a candidate trajectory by sampling from a con-
ditional distribution induced by its own priors, for which we expect more balanced distributions and
more accurate verification. We hypothesize that MLLMs, given their extensive world knowledge, can
generally produce human-aligned priors on desired behavior that can serve as impartial references for
grounding the verification, leading to more truthful and accurate verification. In the following, we out-
line the key factors considered to empirically demonstrate agreement bias and validate this hypothesis.

3.3 EVALUATING MLLM VERIFIERS

Environment Diversity and Multimodality. We consider benchmarks that require nuanced verifi-
cation and multimodal reasoning, and collectively span a diverse range of tasks. VisualWebArena
(VWA) (Koh et al., [2024a) emulates a web browser and spans 910 tasks, many of which combine
text and image instructions (e.g., “Buy this product” + <image>). OSWorld (Xie et al.| [2024)
emulates a computer, with 369 tasks involving widely used desktop applications in both single- and
multi-application workflows. Finally, robomimic (Mandlekar et al., [2021) provides long-horizon
robot manipulation tasks, and we focus on ool hang, the most challenging among them, which
consists of two subtasks: (1) inserting an L-shaped pencil into a base and (2) hanging a wrench on it.
See Sec.[G.I]for illustrations of representative tasks and trajectories.
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Annotations and Scalability. Similar to prior work (Pan et al.,2024a; Xu et al.,|2024; |Huang et al.,
2023)), we rely on the oracle verifiers provided by the benchmarks as proxies for human judgment,
given the high cost of large-scale human annotation. However, we observed several issues with the
oracles in VWA, an issue also noted in concurrent work (Men et al.,|2025) comparing rule-based
evaluation with human annotations. To establish a reliable reference, we corrected non-ambiguous
issues in the VWA oracles—e.g., string parsing bugs, mismatches between task intents and oracle
requirements, and incorrect annotations. To validate the effectiveness and impartiality of these
changes, we evaluated the revised oracles on external labeled trajectories from (Men et al., [2025)),
observing near-perfect agreement with human judgments (Tab.[9). For details about these and other
refinements to (Visual)WebArena, see Sec.[H

Agents and Trajectory Quality. Weak agents and buggy environments lead to trajectories that
are trivial to verify and can artificially inflate verifier performance. For instance, some trajectories
in (Men et al., |2025) exhibit long action loops, as well as “page not found” errors due to bugs in
the browsergym (de Chezelles et al., [2025) suite. Moreover, incorporating trajectories generated
by diverse methods is crucial to ensure the generalization of our findings. Therefore, we fixed several
bugs in the (Visual)WebArena environments and considered agents built from different methods.
To generate trajectories in VWA, we build a strong ReAct agent (Yao et al., 2023b) equipped
with a text-based memory that prevents looping behavior and enables backtracking when paired
with a verifier. For OSWorld, we employ the GUI-Specialist UI-TARS-1.5 (Qin et al., 2025)), the
best-performing agent on the benchmark at the time of this work. For robomimic, we train a diffusion
policy on the expert demonstrations collected by (Zawalski et al.| [2024).

Choice of Experiments. MLLMs have been used to approximate r in several of the applications
discussed in Sec. While exploring this whole range is infeasible, we focus on three representative
cases that can inform general applicability: offline evaluation of agent trajectories, self-refinement via
Reflexion, and online supervision. Three factors motivate this choice: (1) these applications are of
direct practical interest and often serve as building blocks in larger pipelines; (2) they introduce fewer
confounding factors than alternatives such as behavior cloning or RL; and (3) performance on them
yields informative signals for broader applicability—e.g., if rprm produces many false positives in
trajectory evaluation, finetuning or self-refinement on those trajectories is likely to be affected.

Baselines and Ablations. To probe limitations of MLLM verifiers and set strong baselines, we
build verifiers with several methods, including chain-of-thought (CoT) (Wei et al.| 2022) and set-
of-marks (SoM) prompting (Yang et al.,|2023), majority voting (Wang et al.,[2022)), and reasoning
models. For VWA, we also consider the approach from [Pan et al.|(2024a)), where we additionally
provide benchmark-specific rubrics for evaluation. MLLMs are given full trajectories represented as
sequences of screenshot-action pairs and asked to assign a ternary Likert label: SUCCESS, PARTIAL
SUCCESS, or FAILURE, mappedto [1, O, 0] toalign with oracle scores. For reference, Tab. @]
shows that our baseline MLLM verifier is already strong, achieving state-of-the-art performance
on AgentRewardBench, with SGV further improving upon that, surpassing even the original
VisualWebArena oracles. Sec. E] ablates on all such choices, including model family and size,
prompt/scoring templates, SGV design choices, and prior generation mechanism.

Quantitative Metrics. Verifiers should negatively (positively) evaluate trajectories marked as failures
(successes) by humans or proxies to them. Evaluations consistently biased toward either side are
likely undesirable. To capture the degree of alignment in MLLM responses, we evaluate (1) bias, (2)
distance skewness, and (3) true positive and true negative rates:

>ijlldi—d;l

_ i l(Fi=eAri=c) | Pra. x
> i, TR(c) = S~ 1a=t— R P(fi=c|ri =c¢), c€{0,1}

bias = = 3" E[d;], dSkew = 1— S 107 =0)

where 7; is the MLLM verifier reward, r; is the human or oracle reward, and d; = 7; — 7}

Ultimately, a verifier should also be evaluated by its downstream impact: if its feedback is effec-
tive, agent performance should improve. Therefore, for downstream applications, we use task
completion rates (SR) of base agents with and without verifier interventions as the primary metric.

The following highlights key aspects regarding quantitative analysis of MLLM verifiers: (1) bias
and dSkew, also adopted by |Xu et al|(2024), are summary statistics that reflect the distribution
of MLLM responses. Positive values indicate MLLM rewards systematically higher than oracles,
whereas values near zero indicate closer alignment. (2) TNR measures how often MLLMs identify
failures among the subset of trajectories marked as failures by oracles, and is therefore an empirical
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estimate of the probability of classifying a trajectory as flawed when it truly is. Moreover, TNR =
1 — FalsePositiveRate, so we use a low TNR and a high number of false positives interchangeably
(analogous for TPR). (3) While we report multiple metrics for robustness, we emphasize the practical
importance of statistics such as TPR and TNR, which directly relate to the core function of verifiers:
identifying flawed behavior and providing feedback to improve agent performance. Low values of
such statistics indicate not only misalignment but also risks for downstream applications—especially
a low probability of flagging failures (low TNR), as discussed in Sec. [5} (4) We include accuracy
(ACCQC) as an auxiliary metric for interpretation and comparison. Recall that ACC satisfies ACC =
(1—=SR)-TNR+ SR-TPR, providing a summary of TPR-TNR trade-offs.

4 OFFLINE EVALUATION OF AGENT TRAJECTORIES

In this section we evaluate MLLM verification performance for about 1,300 trajectories generated
in VisualWebArena (VWA) and OSWorld. Trajectories are based on Gemini-2.5 in VWA and
UI-Tars-1.5 in OSWorld, with success rates of 47% and 22%, respectively. Tabs. [T] and [2] report
performance across a range of models and test-time scaling techniques. Secs.[A] [D.T|and [E|provide
further breakdowns per environment, trajectory length, and other ablations.

Table 1: Verification of digital agent trajectories. (a) MLLMs tend to over-validate agent behavior, exhibiting positively skewed
rewards, a high number of false positives (1-TNR), and a low probability of flagging failures. (b) SGV improves all metrics
across all models and benchmarks.

Model (a) No SGV (b) SGV (b) - (a)
Acc TPR TNR Bias dSkew | Acc TPR TNR Bias dSkew | Acct Bias] dSkew|

Gemini 2.0 61 96 42 36 34 69 94 55 27 23 +9 -9 -11
Gemini 2.5 Lite 55 96 34 41 39 65 90 51 29 25 +9 -11 -13
Gemini 2.5 Flash 68 94 55 27 24 80 88 76 12 8 +12 -15 -16
Gemini-2.5-Flash (T) 74 92 64 21 18 82 89 78 10 6 +8 -11 -13
Qwen3-32b 69 92 57 25 21 76 38 71 14 11 +7 -11 -10
Qwen3-235b-a22b 65 93 51 28 25 76 89 70 15 12 +10 -14 -13
Qwen3-235b-a22b (T) 66 92 53 27 24 77 91 71 15 12 +11 -12 -12
GPT-4.1 Mini 60 96 40 37 35 74 92 65 17 14 +14 -20 221
GPT-4.1 74 90 64 19 15 81 87 78 10 6 +7 -9 -9
GPT-0l (T) 70 80 62 22 16 78 33 73 13 7 +7 -9 -8
GPT-04 (T) 78 38 71 11 7 84 86 82 6 2 +6 -6 5
GPT-5-Nano (T) 72 84 65 16 11 76 82 73 10 6 +4 -6 5
GPT-5 (T) 81 86 78 8 4 86 85 87 2 1 +5 -6 3
Llama-4-Maverick-17B-128E | 60 92 44 33 29 65 89 54 25 22 +5 -7 8

*(T) = Thinking enabled with the maximum thinking budget for the corresponding model.

Pervasiveness and Resilience of Agreement Bias. MLLMs display a strong tendency to over-
validate agent behavior. This manifests as a high ratio of false positives (low TNR), responses tilted
towards favorable evaluations (strictly positive bias and skewness), a low probability of flagging
failures (in some cases, below 50%), and reduced accuracy. As shown in Tab.[2] this pattern remains
largely unaffected by techniques such as CoT and SoM (rows 3 and 4), majority voting (row 5), and
persists even when task-specific evaluation criteria are provided (row 6). Figs. [7] Bland[I0]illustrate a
key reason behind this pattern: MLLMs generate reasoning that rationalizes flawed trajectories and
their wrong judgments. Sampling fails to mitigate this issue and can even exacerbate it, as higher
temperatures can increase the likelihood of hallucinations and spurious correlations.

Tab. [3] further contextualizes these results through the distribution of MLLM responses. The top
panel reports distributions averaged across 28+ evaluation templates that incorporate commonly used
bias-mitigation strategies, such as criteria order randomization and label rephrasing (see Sec.
for details and all histograms). The bottom panel reports oracle-MLLM agreement rates over
10,000+ samples stratified by success and failure subsets, measuring the probability of sampling
a correct verification from the MLLM output distribution. Tab. 3| (top) reveals that (i) MLLMs tend to
concentrate responses in high score regions; (ii) binary scales (e.g., success/failure as adopted in (Pan
et al.| |2024a) and subsequent work) tend to amplify this bias (e.g., 72% SR vs. 57% expected);
and (iii) increasing label granularity (as in our ternary Likert-scale) can partially mitigate this issue.
Tab. [3] (bottom) shows that over-validation is reflected in the model’s output distribution: on failure
subsets, the probability of sampling a correct response from the MLLM is at or below chance (e.g.,
48% in VWA). This explains the ineffectiveness of methods such as majority voting and suggests an
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Table 2: Major test-time scaling techniques fail to mitigate agreement Table 3: Top: Distribution of MLLM
bias, whereas SGV improves all metrics. evaluations. Bottom: MLLM-oracle
agreement over multiple samples (%)

VisualWebArena OSWorld
# Method Acc TPR TNR Bias dSkew Acc TPR TNR Bias dSkew S PS F/PF U
1 NoCoT 64 91 44 28 24 68 97 60 30 30
2 CoT 65 9 47 26 21 71 97 6 28 27 graglév b 3; ;2 5
3 CoT (binary) 59 90 36 34 29 69 99 6l 30 30 o (binary) -
4 CoT (no SoM) 64 91 4 28 24 71 99 64 28 28 No SGV 70 6 23 1
5 CoT (M) 67 92 48 27 23 69 97 62 30 29 SGV 56 4 39 1
6 [Panctal|2024a) 66 83 53 21 14 - - - - -
7 ‘Thinking 70 9 55 23 18 78 95 73 20 18 -

8 Thinking (M) 70 91 55 24 20 76 95 71 22 20 VisualWebArena OSWorld
9SGV 76 84 71 11 s 8 9 8 13 1 AL F S Al F S
10 SGV(T) 778 70 12 6 87 91 8 8 5 No SGV 65 48 91 71 56 93

— X — NoSGV(T) 68 55 90 79 65 93
*(M) = majority voting; (T) = thinking enabled. SGV 7570 86 8 77 89
Oracle success rates are 47% in VisualWebArena and 22% in OSWorld. # Samples 7,280 2,784

imbalance to be accounted for in test-time and training methods that rely on sampling (see Sec.|[E.3]
for a proof-of-concept experiment exploring the potential for such approaches).

Cross-Model Variations and Verification Difficulty. Agreement bias arises even when verifiers
and agents are built from different model families, sizes, and methods—in Tab. El, models such as
GPT-4.1, and Qwen3 belong to distinct families and are stronger than the models used to build the
agents. Likewise, it occurs for trajectories produced by weak and strong agents, as evidenced by
the suboptimal performance in both OSWorld (22% SR) and VWA (47% SR)(Tabs. [2] [6]and [7) and
weaker agents in VWA (Tab. . It is, however, more severe when models are weaker (e.g., GPT-4.1-
mini) and for trajectories generated by stronger agents. This suggests that closing the gap between
agent and verifier capabilities can alleviate (though not eliminate) the issue, whereas strategies such
as building verifiers with (ensembles of) models that differ from the agents are insufficient.

Adverse Impacts. The bias toward over-validation means that MLLM verifiers fail precisely when
most needed—when agent behavior is flawed and requires correction—with consequences extending
beyond imprecise evaluation of agent performance. For example, for the task “Buy the cheapest
<product> from <category> with <attribute>", a trajectory as in Fig.[7|where the agent searches
for “<product>", clicks the first result, and adds it to the cart, is deemed successful despite omitting
steps such as filtering, sorting, and completing the checkout. Fig. [I0]illustrates an even more extreme
case: the agent produces an answer unsupported by any trajectory information, yet an MLLM verifier
validates it—even though, by construction, no information exists to justify such a judgment.

Relation to Other Biases. Agreement bias has distinct characteristics from other biases identified
in LLM literature, such as “self-bias” (Xu et al.}[2024; |Panickssery et al.| 2024 |Chen et al.| 2025b)—
where models favor their own text generations and for which external knowledge injection is a typical
remedy—and biases attributable to positional or phrasing dependencies in evaluation templates (Zheng
et al.} 2023} |Chen et al., [2025a; |Ye et al., 2024])). In our settings, agreement bias arises despite the
verifier’s inputs omitting text directly produced by agents, and including multimodal inputs augmented
with external information derived from truthful environment data, such as screenshots augmented
with Set-of-Marks, and low-level action representations enriched with DOM data. Likewise, it persists
when agents and verifiers are built from different methods and models and despite interventions such
as label shuffling and rephrasing, as well as access to grounding tools (Tab. [3]and Secs. [E.2]and [E.g).

Effectiveness of SGV. SGV improves verification across all metrics, models, and benchmarks,
increasing TNR by up to 25 percentage points (pp), overall accuracy by up to 14pp, and promoting
responses more aligned with human preferences. This is reflected in reduced bias and skewness, and
in more balanced response distributions across 28+ evaluation templates (see Tab. [3[top)), as well as in
the models’ output distribution (Tab. 3{bottom)). These gains hold even in settings where the verifier
is weaker than the generator (e.g., Gemini 2.0 and GPT-4.1-Mini; see also Sec. . Moreover, SGV
outperforms instructions with task-specific evaluation criteria (Tab.[2] row 5), indicating it enables
models to generate completions to condition themselves that can surpass human-written rubrics,
offering a more scalable alternative. Finally, additional results in Sec. show that SGV outperforms
grounding via web-search tools and is robust to moderate noise in priors generated in the first step;
that weaker models can produce effective priors for stronger models and models of different families;
and that multiple and diverse priors in the first step can further improve performance.
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Remarkably, SGV (i) enables non-reasoning models to match the performance of reasoning
counterparts, and (ii) boosts the accuracy of reasoning models by up to 11pp—a perhaps surprising
result, given that LRMs are explicitly trained to produce intermediate traces, and interventions can
degrade performance (OpenAl}|2025). These results align with intuitions about limitations stemming
from earlier phases of LLM training, raising questions about the potential benefits of augmenting
reasoning-oriented training with an SGV step, pretraining data rewriting (Allen-Zhu and Li}, 2024b),
or methods that account for imbalances in MLLMs’ internal distributions.

Fine-Grained Metrics. These results highlight the importance of reporting fine-grained metrics in
works proposing MLLMs in evaluative roles and artifacts produced by them. Given the trade-offs
inherent to verification, it is crucial to report statistics capturing both the probability of identifying cor-
rect behavior and especially, flawed behavior. Reporting only single or aggregate metrics can be mis-
leading. As shown in Tabs.[T|and 2] verifiers can display about 97% recall and 70% accuracy, yet mis-
classify ~50% of failed trajectories as successes, which can severely harm downstream applications.

Challenges and Trade-offs in Verification. For some models, SGV can lead to a lower TPR. This
pattern stems from two main causes: disagreements with lenient oracles on simplistic tasks and
stricter verification. Specifically, evaluation in these digital benchmarks is based on hard-coded rules
applied to a subset of states. This means that trajectories such as in Fig. [0 where an agent “Buy
the cheapest <product>,” by searching for “<product>,” and purchasing the first result are deemed
successful by oracle scripts. Influenced by agreement bias, MLLMs tend to validate such trajectories,
but when SGYV is applied, this behavior is rejected for lacking steps that confirm that the item is the
cheapest, thereby reducing TPR. On the flip side, Fig. [T3]illustrates a case where SGV only validates
an otherwise correct trajectory after the agent performs extra steps to double-check item attributes.

These examples highlight the challenges of open-ended verification, as well as the potential and limits
of MLLMs as alternatives. For humans, it is readily apparent that behaviors such as in Fig.[9|do not
generalize. Yet, translating this intuition into precise rules is far from trivial: stricter criteria can reject
valid solutions, whereas permissive ones may encourage brittle behavior. MLLMs, like humans, offer
flexibility in interpretation, but this comes at the cost of formal guarantees and vulnerabilities—with
agreement bias being a strong one. In the next section, we analyze the impact of these trade-offs on
downstream applications and show that SGV interventions are typically non-disruptive (see Fig.[I3),
ultimately improving task completion through more generalizable behavior.

5 DOWNSTREAM APPLICATIONS

In this section, we evaluate MLLM verifiers on their ability to boost agent performance in self-
refinement and online supervision. These are applications of direct interest that, so far, have shown
limited benefits and occasional performance degradation (Pan et al.,[2024b; [Huang et al., 2023} |Shinn
et al.| 2023} [Stechly et al., 2024} [Pan et al., 2024b; [Shinn et al., 2023} [Huang et al.,|2023; |[Kamoi
et al.,2024; Stechly et al.||2024). Moreover, these experiments provide an assessment of verifiers’
net impact, given the trade-offs discussed in Sec.[d] Below we discuss main results; for experimental
details and qualitative analysis, see Secs.[A.2]and|C.2]

Self-Refinement. In this setting, after each episode: (i) a verifier evaluates the trajectory; (ii) the
agent reflects on its previous attempt conditioned on the verifier’s evaluation; and (iii) reflections are
given to the agent in subsequent attempts to enable self-correction over time. As shown in Fig. 2}
under oracle verifier supervision, task success rate (SR) increases by up to 21 pps after three iterations,
confirming the feasibility and defining an upper bound for self-refinement. When supervised by an
MLLM verifier, the base agent’s performance quickly plateaus, yielding minimal improvements,
whereas SGV enables consistent progress, boosting SR by up to 10.4 pps. This pattern demonstrates
how agreement bias—particularly, a high rate of false positives—can severely limit the effectiveness
of MLLM verifiers. Referring back to the results in Sec. {4 a TNR of 52% implies that, on average,
the verifier fails to provide a corrective signal in about half of the cases where it is most needed: when
agent behavior is flawed and requires improvement, hindering its ability to self-correct.

Online Supervision. Tab. [4] presents the performance of digital agents with and without feedback
from MLLM verifiers during task execution. Compared with a no-verifier baseline, SGV yields a
9 percentage point (pp) increase in SR on VisualWebArena (20% relative) and a 5 pp increase in
OSWorld (22% relative). Notably, our agent achieves a new state of the art on VisualWebArena,
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Table 4: Task success rate and token usage (in paren-
thesis) on VisualWebArena and OSWorld.

Method VisualWebArena OoswW
All S/C/IR Al
Search Agent[Koh et al.|(2024b] 29 (49x) 34/22/30 -
. - - Rﬁ Yu et al. [(2024] 34930 41/29/32 -
figures/reflexion/reflexion_compacty %@ 89 88/91/87
Base Agent 45 (1x) 50/35/48 22
+ Verifier, no SGV 46 (150 52/36/49 24
+ Verifier, SGV 54229 56/43/58 27

*Averages across 3 runs. S/C/R denote shopping, classifieds, and
reddit subsets of VisualWebArena.

Table 5: Diftusion policy results on robomimic.

Figure 2: Self-Refinement in VisualWebArena.
Agreement bias prevents MLLM verifiers from pro-
viding corrective feedback when agent behavior is Oracle 32 68 24 88
flawed, hindering its ability to self-improve. SGV re- Verifier, no SGV - 22 78 16 89

. S 13 . . Verifier, SGV 28 72 32 96
duces agreement bias, yielding consistent gains across

refinement iterations. *FR, PSR and SR are the proportions of roll-outs with 0, 1 and 2
subtasks (out of 2) completed.

Method FR PSR SR  #Replans

surpassing the previous best by 20 pp (58% relative). Unlike prior methods, these gains come with
modest token overhead, rely on native web actions for backtracking, and do not grant the agent access
to prior executions. In contrast, the base MLLM verifier fails to deliver meaningful improvements.

A few factors explain these results. First, SGV identifies suboptimal behavior and provides feedback
that enables agents to backtrack and complete the task (e.g., Fig.[I3). Without SGV, agreement bias
prevents verifiers from intervening precisely when agent behavior is flawed, limiting their effective-
ness (e.g., Fig. . Second, while SGV can lead to stricter verification, interventions are mostly non-
disruptive. For example, in Fig. [T3]the verifier rejects a greedy strategy that technically satisfies the
benchmark, prompting the agent to search for and confirm user-requested attributes, ultimately leading
to task completion through a more robust approach. Fig. [3] quantifies this pattern: without SGV, the
verifier endorses flawed behavior in 30% of the tasks, offering no signal for improvement. With SGV,
10% of tasks improve due to accurate failure detection, and among the 7.4% of tasks marked as false
negatives, 6.6% remain successful, whereas only 0.8% transition to failure. Similarly, Tab. E] shows
that the baseline MLLM verifier fails to deliver improvements on robomimic. As indicated by the
relatively high Partial Success Rates (PSR), the verifier is generally able to guide the policy to partial
completion. However, influenced by agreement bias, it struggles to further guide the policy toward full
completion, as evidenced by the low number of replans and the overall success rate (SR). In contrast,
SGV triggers replans more often, and while not all interventions succeed, the overall impact is largely
positive, improving over the oracle baseline by 8 pp. For further discussion, see Sec.[C.2]for a cate-
gorization of factors influencing success rates and Sec. [E.4]for the impact of verifier design choices.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We identify agreement bias, a critical limitation that hinders MLLMs from serving as verifiers of agent
behavior, and demonstrate its adverse effects on existing applications. We introduce SGV, a simple
yet effective method that improves verification across multiple models and benchmarks, with cor-
responding benefits to downstream applications. Although SGV mitigates agreement bias, it does not
eliminate it. Our qualitative analysis (Sec. [C.I)) indicates that remaining failures often stem from lim-
itations in the base models’ integration of visual perception and language. Future work may explore
augmenting SGV with complementary methods to enhance these capabilities, such as integrating vi-
sual experts for fine-grained perception. In parallel, compelling directions for open-ended verification
include combining MLLMs with symbolic methods (Kambhampati et al.||2024) and developing other
training- or test-time strategies that account for the skewness in MLLM output distributions associated
with agreement bias (Sec.[E.3). Finally, an important open question concerns when to invoke a verifier
and the relative value of process- versus outcome-based verification, particularly in digital environ-
ments where state spaces are often discrete and actions can be irreversible or destructive (Sec. [E.4).
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A EXPERIMENTAL DETAILS AND PRACTICAL IMPLEMENTATION

A.l1 OFFLINE EVALUATION OF AGENT TRAJECTORIES

For the experiments reported in Tab. |1}, we employ each model with its author-recommended inference
parameters. For the ablations in Tab. [2]and Sec.[E] we employ gemini-2.5-flash with zero
temperature, except for the majority voting baselines, where we select the most frequent response
among 8 completions for each trajectory generated with a temperature of 1.5, top-p of 0.95,
and top-k set to 64.

For non-thinking models, all settings include a CoT instruction (see prompts in Sec. [B]). For thinking
models we set thinking budgets to the maximum value for each model and omit CoT instructions, as
they inherently produce reasoning traces and adding them can degrade performance |OpenAll (2025).

Models are given interleaved images and text, in the form of screenshots produced by the environment
and actions generated by the agent after they are parsed by the environment. In the case of ID-based
actions, we overlay bounding boxes on the screenshots to indicate the location of each interactable
element. In the case of coordinate-based actions, we overlay red markers to indicate the target
of mouse actions. For Ul-Tars-1.5-7b, we additionally translate agent outputs to english using
gemini-2.0 as the agent sometimes produces answers in chinese. Sec. [G] show examples of
trajectories, and Sec. [B|contains details about prompt templates.
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A.2 DOWNSTREAM APPLICATIONS

For our results in downstream applications, we employ gemini-2.5-flash as the MLLM to
build the verifiers, with temperature set to 0, thinking disabled, and a token limit of §192. The prompt
templates and inputs given to the verifier are the same as the ones in the offline scenario described
in Sec.

The numbers reported are averages across three runs in the digital benchmarks, and 50 rollouts with a
horizon of 700 time steps in robomimic.

Reflexion — Implementation Details. After each episode for a given task, the same agent that
generates the trajectory is prompted to reflect on its performance, using the verifier’s score as part of
the context. This reflection is saved to an external memory, that is appended to the agent’s context
window in subsequent episodes. The prompt is almost the same as the agent’s prompt, and is provided
in Sec.

Online Supervision — Verifier and Agent Implementation Details.

For VisualWebArena experiments in Sec. 5] we use gemini-2.5-flash for both the ReAct
agent and the verifier. For the no-SGV case, the model is given a CoT instruction as in Sec. |B| The
environment settings follow those in [Koh et al.| (2024a)): we adopt Set-of-Mark prompting |Yang et al.
(2023)) for the screenshots, with a viewport size of 1280x2048 pixels. For consistency with prior
work, we use BLIP-2 |Li et al.| (2023) to provide text captions for images making part of the task
objectives and environment observations (though we observe little to no difference in performance
when captions are omitted). We set the maximum number of steps to 30, which allows the agent some
room for backtracking while keeping the search budget comparable to—though still more constrained
than—prior approaches that employ tree-search methods [Koh et al.|(2024b); [Yu et al.| (2024). For
the OSWorld experiments, we follow the same setup and implementation as in|Qin et al.| (2025). We
allow up to 50 steps for the agent and run UI-TARS-1.5-7B on a single RTX 3090 GPU.

For VisualWebArena, the MLLM acts as an outcome verifier, intervening when the agent issues a
stop action. If it deems the task as incomplete, it generates natural language feedback that is appended
to the agent’s context window to influence subsequent generations.

For OSWorld, we experiment with two configurations: one where the MLLM intervenes only after
stop actions, and another where it verifies progress every 5 steps (shown in our main results). The
latter configuration was inspired by preliminary experiments showing that UI-Tars-1.5 can derail
from the task objective and rapidly reach points difficult to recover from. As shown in Tab.[§] SGV
improves performance in both cases, although results are slightly better in the latter.

In robomimic, a verifier monitors task progression and triggers the diffusion policy to regenerate an
action sequence (or “replan”) at determined steps. In the oracle scenario, the steps are determined
by ground-truth subtask completions. In the MLLM verifier scenario, the MLLM receives a natural
language description of the task, the first and last screenshots, and is called every 20 time steps. If it
deems the trajectory off-track, a replan is triggered.

Sec. [B.4] shows how the feedback is incorporated, and figures in Sec. [G] provide examples of
evaluations and generated feedback.

A.3 PRACTICAL IMPLEMENTATION

SGV introduces low compute overhead and generally improves performance without complex prompt
engineering, making it simple to integrate into pipelines where MLLMs play evaluative roles. For
instance, adding the first step with a single-line instruction to produce domain knowledge generally
helps, with little to no change to existing prompts (see Sec. [E.7). Nonetheless, we observe the
following patterns that may inform general use:

1) Generating broader, more encompassing priors in the first step tends to be superior.

2) Producing priors in a single, monolithic step degrades performance, as models tend to anchor them
to the data under evaluation.
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3) Some models benefit when the second step includes an instruction to compare against their priors—
something SGV inherently enables—although a standard CoT instruction typically suffices. See
Sec.|B|for prompts and our codebase for more examples.

We also refer readers to Sec. [E] which provides further guidance on MLLM verifier design, including
analyses of the performance of Likert, numeric, and other prompt templates and interventions; the
effects of noise, model scale, and diversity in SGV prior generation; the potential for calibrating
MLLM output distributions to account for the skew introduced by agreement bias; comparisons
between periodic and outcome-based verification; and the impact of trajectory length and verification
difficulty on MLLM verification performance.

B PROMPTS

For all prompts, content enclosed in curly braces ({ .. .}) is dynamically replaced at runtime
with the corresponding information. Text enclosed in double angle brackets («. . .») provides
explanatory notes for the reader and is not included in the prompts at runtime. The labels USER: and
ASSISTANT: indicate role fields passed via the OpenAl API format and are not literal strings in
the prompt. Text separated by a pipe (| ) inside curly braces ({ . . . }) indicates phrases that change
depending on the context.

B.1 COMMON PROMPTS

The following three prompt templates are common across all verifier and reflexion prompts, with
slight variations to accommodate specific details such as image annotation mode and environment
specifics.

Trajectory Prompt - VisualWebArena and OSWorld

USER: ## OBJECTIVE: {task objective text} {task objective images}

USER: ### STATE “t-j° SCREENSHOT: {screenshot}
ASSISTANT: {generated action}

USER: ### STATE “t-1° SCREENSHOT: {screenshot}
ASSISTANT: {generated action}

Image Information Prompts - VisualWebArena

<<if set-of-mark prompting is used (baseline)>>

### Webpage screenshots: These are screenshots of the webpage, with each interactable
element assigned a unique numerical id. Each bounding box and its respective id shares
the same color.

<<if set-of-marks and coordinate annotations>>

### Webpage screenshots: These are screenshots of the webpage, with each interactable
element assigned a unique numerical id. Each bounding box and its respective id shares
the same color. The colored markers, if present, indicates the destination of actions
taken at the corresponding state.

<<if coordinates are used>>
### Webpage screenshots: These are screenshots of the webpage taken at each step of the
navigation. The colored markers, if present, indicate the destination of actions taken
at the corresponding state.

<<if no visual annotations>>
### Webpage screenshots: These are screenshots of the webpage taken at each step of the
navigation.
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Image Information Prompts - OSWorld

<<if set-of-mark prompting is used>>

### Screenshots: These are visual captures of the computer screen taken at specific
states of the

navigation process, with each interactable element assigned a unique numerical id. Each
bounding box and its respective id shares the same color.

<<if set-of-marks and coordinates annotations>>

### Screenshots: These are visual captures of the computer screen taken at specific
states of the

navigation process, with each interactable element assigned a unique numerical id. Each
bounding box and its respective id shares the same color. The colored markers, if
present, indicates the destination of mouse actions taken at the corresponding state.

<<if coordinates annotations only (baseline)>>

### Screenshots: These are visual captures of the computer screen taken at specific
states of the

navigation process. The colored markers, if present, indicate the destination of
actions taken at the corresponding state. <<if coordinates are used>>

<<if no visual annotations>>

### Screenshots: These are visual captures of the computer screen taken at specific
states of the

navigation process.

B.2 VERIFIER PROMPTS

To maximize consistency and minimize sensitivity due to prompt variations, we construct all verifier
prompts from the following parts:

* The system prompt, which describes the role of the agent and environment details.

* The trajectory prompt, which is created in an interleaved user-assistant conversation format, and
contains information on the task to be accomplished, screenshots of the environment states, and
the actions taken by the agent being evaluated.

* The evaluation prompt, which includes (i) the criteria for the evaluation, and (ii) instructions for
step-by-step reasoning. Check Secs. [B.9]and [E.2|for ablations to the scoring templates. Ablations
to (ii) are indicated in the prompts below, and discussed in the main text (Sec. E[) and Secs. @

and[El

We aim to keep the prompts as consistent as possible across experiments, applying slight adjustments
to accommodate environment-specific details and prompting variations. For instance, the NoCoT
variant in section 4 is nearly identical to the CoT variant, differing only in the removal of the
step-by-step reasoning instructions.

Verifier System Prompt - VisualWebArena

You are an intelligent agent tasked with supervising an assistant navigating a web
browser to accomplish a web-based task. Your job is to evaluate the assistant's work,
and provide feedback so it can progress towards the objective.

## Here's the information you'll have:

### The objective: This is the task the assistant is trying to complete.
{image_info_prompt_part}

### The execution trace: This is a sequence of webpage screenshots paired with the
assistant's actions, detailing the web navigation so far.

### General web knowledge: This is a general description of how tasks like this are
typically accomplished on the web. <<Only included for SGV variants>>

## Assistant's capabilities: To effectively analyze the assistant's work, consider the
actions it can perform. These actions fall into the following categories:

### Page Operation Actions:

“"Tclick [id]""": Click on an element with a specific id on the webpage.

type [id] [content] [enter_after] " ": Type the content into the field with id. If °
enter_after™ is 0, the "Enter" key is not pressed after typing; otherwise, the "Enter"
key is automatically pressed.
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“““hover [id] " : Hover over an element with id.
““press [key_comb] " : Press a keyboard key or key combination (e.g., delete, ctrl+a).
““scroll [down] ™" or " scroll [up] "": Scroll the webpage up or down.

### Tab Management Actions:

“"“new_tab " : Open a new, empty browser tab.

“"“tab_focus [tab_index] " : Switch the browser's focus to a specific tab using its
index.

“““close_tab ™ ": Close the currently active tab.

### URL Navigation Actions:

“"goto [url] "": Navigate to a specific URL.

“""go_back™ " : Navigate to the previously viewed page.

“""go_forward " : Navigate to the next page (if a previous 'go_back' action was
performed) .

### Completion Action:

“"“stop [answer] " : This action is issued when the task is believed to be complete. If
the task requires a text-based answer, the answer is provided within the brackets. If

the task is deemed impossible, this action is issued optionally with a reason why.

## To be successful, it is very important to consider the following:

1. You must not not assume the assistant's work is correct or incorrect beforehand. You
should come up with your own opinion based on the information provided.

2. You must connect the dots between the objective and the information provided.

3. Your evaluation should be based on task completion; don't worry about efficiency for
now.

4. Give utmost importance to the visual information provided, especially the
screenshots in the execution trace.

5. The General web knowledge can contain noise or information not relevant to your
specific context. Therefore, you should selectively use it to guide your analysis and

reasoning, making sure to x*consider the context of the specific task and web

navigation given to you.x* <<Only included for SGV variants>>

Verifier System Prompt - OSWorld

You are an intelligent agent tasked with supervising an assistant utilizing a computer
to accomplish computer-based tasks. Your job is to evaluate the assistant's work, and
provide feedback so it can progress towards the objective.

## Here's the information you'll have:

### The objective: This is the task the assistant is trying to complete.
{image_info_prompt_part}

### The execution trace: This is a sequence of screenshots of the computer screen
paired with the assistant's responses, detailing the computer navigation so far.

### General Computer Knowledge: This is a general description of how tasks like this
are typically accomplished on a computer. <<Only included for SGV variants>>

## Assistant's capabilities: To effectively analyze the assistant's work, consider the
actions it can perform. These actions fall into the following categories:
### Mouse Actions:

— click(start_box="'<|box_start|>(xl,yl)<|box_end|>'): Left clicks at the (x1,yl)
coordinates.

— left_double (start_box='<|box_start|>(xl,yl)<|box_end|>"'): Left double click at the (
x1,yl) coordinates.

- right_single (start_box='<|box_start|>(xl,yl)<|box_end|>"'): Right click at the (x1,yl
coordinates.

- drag(start_box='<|box_start|>(x1l,yl)<|box_end|>', end_box='<|box_start|>(x3,y3)<]|

box_end|>'): Drags the element at the (x1,yl) coordinates to the (x3,y3) coordinates.

— scroll (start_box='<|box_start|>(xl,yl)<|box_end|>', direction='down or up or right or
left'): Scrolls the mouse wheel in the specified direction.

### Keyboard Actions:

— hotkey (key='"): Press a specific key.

- type(content='"'): Types the string following “content”. If followed by "\n", it means
the input is submitted.

- wait () : Pauses for 5s and takes a new screenshot to check for any changes.

### Completion Action:

— finished(content='<|content|>"'): This action is issued when the task is believed to
be complete. “<content>" is optional, and is used to provide a reason why the task is
complete.

## To be successful, it is *xvery importantxx to follow the following rules:
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1. You must not not assume the assistant's work is correct or incorrect beforehand. You
should come up with your own opinion based on the information provided.

2. You must connect the dots between the objective and the information provided.

3. Give utmost importance to the visual information provided, especially the

screenshots in the execution trace.

4. Your evaluation should be based on task completion; don't worry about efficiency for
now.

5. The General computer knowledge can contain noise or information not relevant to your
specific context. Therefore, you should selectively use it to guide your analysis and
reasoning, making sure to *xconsider the context of the specific task and computer

navigation given to you.x*<<Only included for SGV variants>>

Full Verifier Prompt

{system prompt}
{trajectory prompt}

USER:
## General web knowledge: {output from first step} <<Only included for SGV variants>>

Now please provide your response.

## Here is the evaluation criteria:<<This section is changed in ablations to evaluation
templates, e.g., numerical scoring>>

SUCCESS: The assistant executed *xall ofx*x what's necessary to complete the objective.
The task is fully accomplished.

PARTIAL SUCCESS: The assistant executed x*most ofxx what's necessary to complete the
objective. The task is partially accomplished.

FAILURE: The assistant executed *xmostly incorrectxx steps. The task is not
accomplished, and major revisions are needed.

## Provide your response as follows:

REASONING: [Comprehensive step-by-step reasoning to come up with your evaluation and
feedback] <<Only included for CoT variants>>

EVALUATION: [Your evaluation following the evaluation criteria]

FEEDBACK: [Feedback so the assistant can progress towards the objective]

Pan et al.| (2024a) Verifier System Prompt

You are an expert in evaluating the performance of a web navigation agent. The agent is
designed to help a human user navigate a website to complete a task. Given the user's
intent, the agent's action history, the final state of the webpage, and the agent's
response to the user, your goal is to decide whether the agent's execution is
successful or not.

There are three types of tasks:
1. Information seeking: The user wants to obtain certain information from the webpage,
such as the information of a product, reviews, map info, comparison of map routes, etc.
The bot's response must contain the information the user wants, or explicitly state
that the information is not available. Otherwise, e.g. the bot encounters an exception
and respond with the error content, the task is considered a failure. Besides, be
careful about the sufficiency of the agent's actions. For example, when asked to list
the top-searched items in a shop, the agent should order the items by the number of
searches, and then return the top items. If the ordering action is missing, the task is
likely to fail.
2. Site navigation: The user wants to navigate to a specific page. Carefully examine
the bot's action history and the final state of the webpage to determine whether the
bot successfully completes the task. No need to consider the bot's response.
3. Content modification: The user wants to modify the content of a webpage or
configuration. Carefully examine the bot's action history and the final state of the
webpage to determine whether the bot successfully completes the task. No need to
consider the bot's response.

* IMPORTANT *
Format your response into two lines as shown below:

Thoughts: <your thoughts and reasoning process>
Status: "success", "partial success", or "failure"
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Full |Pan et al.|(2024a) Verifier Prompt

{system prompt }

USER:
## User Intent: {task objective text}

## Action History:
1: {generated action}

n: {generated action}

## Last snapshot of the webpage: {screenshot}

B.3 SGV VERIFIER - FIRST STEP PROMPTS

For the main experiments, we use separate prompts for the retrieval step and the evaluation step.
Below, we present the prompts for the first step. As shown in Sec.[B.8] similar performance can
be achieved by reusing the prompts from Sec.[B.2] as long as the verification process is explicitly
divided into retrieval and evaluation phases.

SGYV - First Step System Prompt

You are a helpful assistant with deep knowledge in {web navigation | computer-based
workflows}.

Your job is to provide a description of how tasks like the ones provided to you are
typically accomplished on {the web | computers}.

## Here's the information you'll have:

### Objective: This is an english description of the task, possibly accompanied by
images that provide more context on what must be accomplished.

### Screenshots: These are screenshots of the {webpage | computer screen}, giving you
context to further understand what must be accomplished.

SGYV - Full First Step Prompt

{system prompt first-step}
## OBJECTIVE: {task objective text}

## IMAGES:
Image 0: {task objective image 1}

Image n: {task objective image n}
Image n+l: initial {webpage | computer} screenshot: {screenshot}

Now please provide your response:
<Description of how tasks such as this are typically accomplished on {the web |
computers}>.

B.4 VISUALWEBARENA AGENT PROMPT

The prompt for VisualWebArena is built upon the authors’ original implementation 2024a),
with the following changes:

* We provide the history of thoughts and actions generated by the agent in previous interactions,
which serve as a text-based memory to prevent loops and allow backtracking.

* We refine parts of the prompt to use Markdown formatting and to make the instructions more
precise.

* For one of the examples, we include previous thoughts and actions to match the new inputs.
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VisualWebArena Agent Prompt

{system prompt }
{examples}

## RATIONALE AND ACTION HISTORY:

### STATE “t-3:

— x*RATIONALEx*: {agent generations}

— x*ACTION#**: {action parsed by the environment}

### STATE “t-1:
— x*RATIONALEx*: {agent generations}
— x*ACTION**: {action parsed by the environment}

Here is the current state "t for you to determine what to do next:
## TEXT OBSERVATION "t : {text observation}

## URL: {webpage URL}
## OBJECTIVE: {task objective text}

## FEEDBACK: Here is your previous response at the current state "t~ and xxfeedbackxx
about it. Use this to revise your response if you deem appropriate.

### Previous response: {last generated action}

### Feedback: {verifier feedback} <<Only included in rounds where feedback is provided
by the verifier>>

IMAGES:
Image 0: {task objective image 0}

Image n: {task objective image n}
Image n+l: current webpage screenshot at state “t°: {screenshot}

B.5 OSWORLD AGENT PROMPT

SWorld Agent Prompt

You are a GUI agent. You are given a task and your action history, with screenshots.
You need to perform the next action to complete the task.

## Output Format
Thought :
Action:

## Action Space

click (start_box='<|box_start|>(xl,yl)<|box_end|>")

left_double (start_box='<|box_start|>(x1l,yl)<|box_end|>")

right_single (start_box='<|box_start|>(x1l,yl)<|box_end|>")

drag (start_box="'<|box_start|>(xl,yl)<|box_end|>', end_box='<|box_start|>(x3,y3)<|
box_end|>")

hotkey (key="")

type (content='") #If you want to submit your input, use "\n" at the end of “content’.
scroll (start_box='<|box_start|>(xl,yl)<|box_end|>', direction='down or up or right or
left')

wait () #Sleep for 5s and take a screenshot to check for any changes.

finished (content="xxx"') # Use escape characters \', \", and \n in content part to

ensure we can parse the content in normal python string format.

## Note

— Use English in “Thought”™ part.

— Write a small plan and finally summarize your next action (with its target element)
in one sentence in “Thought™ part.

## User Instruction
{task objective text}
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B.6 REFLEXION PROMPT

Reflexion System Prompt

You are an autonomous intelligent agent that was tasked with navigating a web browser
to complete web-based tasks.

Your goal now is to analyze your behavior on a previous task attempt. You must analyze
the strategy and path you took when trying to complete the task, understand the reason
why you {failed|succeded}, and devise *xconcise*x reflections that can be helpful when
you are solving the same task in the future.

## Here's the information you'll have:

### The objective: This is the task you were trying to complete.

### The execution trace: This is a sequence of webpage screenshots paired with your
responses, detailing the web navigation from the beginning to the end of the previous
task attempt.

### Previous reflections: This is a list of previous reflections you've made about
other failed executions of this task.

### Webpage screenshots: These are screenshots of the webpage, with each interactable
element assigned a unique numerical id. Each bounding box and its respective id shares
the same color.

## To analyze your past task attempts, consider the actions that were available to you.
These actions fall into the following categories:
### Page Operation Actions:
“"Tclick [id] ™ "": This action clicks on an element with a specific id on the webpage.
type [id] [content] [enter_after] "~ : Use this to type the content into the field
with id. If “enter_after™ is 0, the "Enter" key is not pressed after typing; otherwise,
the "Enter" key is automatically pressed.
“““hover [id] "": Hover over an element with id.
““press [key_comb] [text] "": Press a keyboard key or key combination (e.g., delete,

ctrl+a) with optional text input if the key combination requires it (e.g., ~~“press [
ctrl+f] [some_text] ~7).
“""scroll [down] " or “““scroll [up] " : Scroll the webpage up or down.

### Tab Management Actions:

““"new_tab ™ ": Open a new, empty browser tab.

““"tab_focus [tab_index] " : Switch the browser's focus to a specific tab using its
index.

“"“close_tab ™" : Close the currently active tab.

### URL Navigation Actions:

““Tgoto [url] T ": Navigate to a specific URL.

“T"go_back® ": Navigate to the previously viewed page.

““go_forward " ": Navigate to the next page (if a previous 'go_back' action was
performed) .

### Completion Action:

“"“stop [answer] " : Issue this action if you believe the task is complete or
infeasible. If the objective is to find a text-based answer, provide the answer in the
bracket. If you deem the task is infeasible, provide a reason why.

# To be successful, it is **very importantxx to consider the following:

You should carefully analyze the execution trace to come up with your response.

You must connect the dots between the objective and the information provided.

The execution trace is from a previous task attempt that is *xfinishedxx. Therefore,
you should not try to continue the task nor propose actions continuing from the

previous task attempt.

4. Prioritize key and general aspects. Your reflections should be applicable to future
attempts to this task that will be xxindependentxx from previous task attempts and will
start from the beginning.

5. Try to to think differently from previous task attempts and reflections. Integrate
information from previous reflections that can be pertinent for future task attempts

while thinking of possible new strategies that can lead to a successful completion of

this task.

Reflexion Full Prompt

{system prompt}

{trajectory prompt}

## Task Status: {verifier evaluation of the task attempt (e.g., FAILURE) }
## Previous Reflections: {reflections from prior executions of the task}

w N =
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## Now please provide your response as follows:

POSSIBLE REASONS FOR {status}: [What are the possible reasons why the objective was {
achieved|not achieved}?] <<Note: we observe agreement bias can lead to blind agreement
with prior executions and affect reflexion generation. Similar to SGV, this section
helps mitigate this issue.>>

REFLECTION: [Reflections for future task attempts]

B.7 ROBOMIMIC PROMPTS

robomimic SGV Prompt - First Step

You are highly skilled in robotic tasks.
Based on the task description and the image of the initial state, predict how the task
must look like at the current time stamp.

Task Description:
Pick up L-shaped pencil and insert L-shaped pencil into the hole
Pick up tool and hang tool on L-shaped pencil

Current time stamp: {n/N}
{image}

robomimic SGV Prompt - Second Step

Compare the prediction with the actual state of the system in the current time step
depicted in the image.

If the current state shows a situation that depicts failure, label it as failure.

If both tasks being completed or nearing completion was predicted and both tasks have
been completed, label it as success.

If the prediction is that the task will be in progress and the task is in progress,
label it as in progress.

{first step generation}
Current time stamp: {n/N}
{image}

robomimic - Verifier Prompt, no SGV

You are highly skilled in robotic task verification.

Based on the task description, the current time step and the the actual state of the
system in the current time step (depicted in the image), label it as 'success', '
failure' or 'in progress'.

Given the time step, if the current state is not as per expectation (with dropped tools
), label it as failure.

If the time step is towards completion, and the task has been completed, label it as
success.

Given the time step, if the task is expected to be in progress and the task is in
progress, label it as in progress.

Current time stamp: {n/N}
{image}
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B.8 ABLATION PROMPTS - SGV

prompts from Sec. as long as prior generation and verification are divided into two phases. Below
is the prompt used in the first step. The second step prompts are identical to those in Sec.[B.2]

SGYV Unified - Full First Step Prompt

{verifier system prompt} <<same as in Appendix B.2>>

As we show in Se@ similar performance for SGV can be achieved by re-utilizing the verifier

## OBJECTIVE: {task objective text}

## IMAGES:
Image 0: {task objective image 0}

Image n: {task objective image n}
Image n+l: initial {webpage | computer} screenshot: {screenshot}

Please first provide the following
[Description of how tasks such as this are typically accomplished on {the web |
computers}].

The following prompts are used when prior generation and verification are performed together in a
single, monolithic step. The system prompts are the same as in Sec. except for the rules, which
are replaced by the following.

Monolithic Retrieve and Verify - System Prompt Rules

## To be successful, it is very important to follow the following rules:

1. You must not not assume the assistant's work is correct or incorrect beforehand. You
should come up with your own opinion based on the information provided.

2. You must connect the dots between the objective and the information provided.

3. Your evaluation should be based on task completion; don't worry about efficiency for
now.

4. Give utmost importance to the visual information provided, especially the
screenshots in the execution trace.

5. You should come up with a detailed description of how tasks like this are typically
accomplished on {the web | computers}.

6. Use this General {Web Knowledge | Computer Knowledge} as a guide, but also consider

the context of the specific task given to you.

Monolithic Retrieve and Verify - Full Prompt

{system prompt}
{trajectory prompt}

Now please provide your response.

## Here is the evaluation criteria:

SUCCESS: The assistant executed xxall ofx* what's necessary to complete the objective.
The task is fully accomplished.

PARTIAL SUCCESS: The assistant executed x*most ofxx what's necessary to complete the
objective. The task is partially accomplished.

FAILURE: The assistant executed *xmostly incorrectx* steps. The task is not
accomplished, and major revisions are needed.

## Provide your response as follows:

GENERAL {WEB | COMPUTER} KNOWLEDGE: <Description of how tasks such as this are
typically accomplished on {the web | computer}>

REASONING: <Comprehensive step-by-step reasoning to come up with your evaluation and
feedback> <<Only included for CoT variants>>

EVALUATION: <Your evaluation following the evaluation criteria>

FEEDBACK: <Feedback so the assistant can progress towards the objective>
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B.9 ABLATION PROMPTS - EVALUATION CRITERIA

The following list some examples of scoring templates used in our experiments for ablations
in Sec.[E2] For all the 28+ templates, please refer to our codebase. The remainder of the prompts
is the same as in Sec. [B.2] except for the evaluation criteria section, which is replaced by the
corresponding templates below.

Scoring Template Examples

<<Likert Ternary Scale (baseline)>>

SUCCESS: The assistant executed **all ofx* what's necessary to complete the objective.
The task is fully accomplished.

PARTIAL SUCCESS: The assistant executed x*most ofx* what's necessary to complete the
objective. The task is partially accomplished. <<removed if using a binary scale>>
FAILURE: The assistant executed *xmostly incorrectx* steps. The task is not
accomplished, and major revisions are needed.

<<Score-based Scale, four-way>>
Provide a single score, rating the assistant's work strictly on a scale of 1 to 10
based on the confidence of its correctness for the task.

Score 1 to 2: You are very confident that the assistant's work is completely incorrect
for the task.

Score 3 to 4: You are fairly confident that the assistant's work is incorrect, but
there is a small chance it could be partially correct.

Score 5 to 6: You are uncertain about the correctness of the assistant's work; it could
be right or wrong.

Score 7 to 8: You are fairly confident that the assistant's work is correct, but there
is a small chance it could be partially incorrect.

Score 9 to 10: You are very confident that the assistant's work is completely correct
for the task.

<<Score-based Scale, three-way>>
Provide a single score, rating the assistant's work strictly on a scale of 1 to 10
based on the confidence of its correctness for the task.

Score 1 to 4: You are confident that the assistant's work is incorrect, but there is a
small chance it could be partially correct.

Score 5 to 6: You are uncertain about the correctness of the assistant's work; it could
be right or wrong.

Score 7 to 10: You are confident that the assistant's work is completely correct for
the task.

<<Range-based Scale, implicit>>

Provide a single score, rating the assistant's work strictly on a scale of 1 to 10

based on the confidence of its correctness for the task.

The score can be any scalar between 1 and 10, where:

— A x*xlow scorexx means you are very confident that the assistant's work is completely
incorrect for the task.

— A x*xhigh score*x means you are very confident that the assistant's work is completely
correct for the task.

- A x*xmid-range scorexx means you are uncertain about the correctness of the assistant'
s work; it could be right or wrong.

<<Range-based Scale, explicit>>

Provide a single score, rating the assistant's work strictly on a scale of 1 to 10
based on the confidence of its correctness for the task.

The score can be any scalar between 1 and 10, where:

— A score close to 1 means you are very confident that the assistant's work is
completely incorrect for the task.

— A score close to 10 means you are very confident that the assistant's work is
completely correct for the task.

— A score close to 5 means you are uncertain about the correctness of the assistant's
work; it could be right or wrong.

<<True/False Statements>>
The following are statements about the assistant's work. If a statement is correct,
please reply with T, otherwise reply with F.

A. The assistant executed **all ofx* what's necessary to complete the objective. The
task is fully accomplished.

B. The assistant executed x*most ofx* what's necessary to complete the objective. The
task is partially accomplished.

C. The assistant executed x*part ofx* what's necessary to complete the objective. The
task is partially accomplished.
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D. The assistant executed x*mostly incorrectx* steps. The task is not accomplished, and
major revisions are needed.

E. It is not clear if the assistant executed what's necessary to complete the objective
. The task can be fully accomplished, partially accomplished, or not accomplished.

Provide your response as a list of letters for each statement, as follows:
TorF, TorF, TorF, TorF, T orF

<<Option-based, roman, five-way>>

Please evaluate the assistant's work by selecting the option that best represents your
level of confidence.

What best describes your confidence in the assistant's work?

I. You are very confident that the assistant's work is completely incorrect for the

task.

II. You are fairly confident that the assistant's work is incorrect, but there is a
small chance it could be partially correct.

III. You are uncertain about the correctness of the assistant's work; it could be right
Or wrong.

IV. You are fairly confident that the assistant's work is correct, but there is a small
chance it could be partially incorrect.

V. You are very confident that the assistant's work is completely correct for the task.

C QUALITATIVE ANALYSIS

C.1 AGREEMENT BIAS

Fig.[7]illustrates the trajectory for a failed task in VisualWebArena, along with evaluations produced
by three verifier variants. Two key flaws are evident in the trajectory: (i) the agent does not perform
any price comparisons, and (ii) it stops after adding an item to the cart, without proceeding to
checkout. The CoT verifiers validate the execution, providing reasoning traces that justify it as correct
despite the evident shortcomings. In contrast, the SGV verifier flags the absence of price comparison,
and accurately declares the execution as unsuccessful.

C.2 ONLINE VERIFICATION AND FEEDBACK

As discussed in section 5, our method enables an MLLM verifier to monitor agent behavior and
provide natural language feedback in real time, guiding the agent toward successful task completion.
We show there that this mechanism has a positive overall impact on performance, resulting in
a 5 percentage point increase in success rate on VisualWebArena (approximately 10% relative
improvement) and a 2 percentage point gain in OSWorld (approximately 9% relative), compared to a
no-verifier baseline.

The success of such a mechanism relies on three factors: (i) the accuracy of the verifier’s judgment,
(ii) the quality of its feedback, and (iii) the ability of the agent to interpret and act upon that feedback,
including the capacity to revise or backtrack when necessary.

In this section, we explore these factors through representative cases that offer insight into both the
strengths and failure modes of our method — and of MLLM verifiers more broadly. The cases are as
follows:

* Accurate verification with helpful feedback: The verifier correctly identifies flaws and provides
actionable feedback that improves task execution.

* Accurate verification with helpful feedback, limited by agent ability: The verifier offers
correct judgments and useful feedback, but the agent fails to act on it effectively.

* Strict verification, harmless: False negatives from the verifier that do not affect the agent’s final
outcome and often elicit more robust behavior.

* Strict verification, harmful: False negatives that lead to degraded task performance or failed
executions.

* Overly lenient verification: False positives where the verifier fails to detect clear mistakes, and
contributes no useful signal. This stems from agreement bias and is the most prominent failure
case for conventional MLLM verifiers.
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Accurate Verification with Helpful Feedback Fig.|13|shows an example where the verifier success-
fully steers the ReAct agent to a correct execution on a challenging VisualWebArena task. The agent
performs a sequence of reasonable steps and finds a product closely aligned with the user’s request,
but not the cheapest one. The verifier detects this oversight and provides feedback that prompts the
agent to backtrack, sort the results correctly, and select the appropriate item.

This is a particularly challenging case that is highly susceptible to agreement bias, as the initial
trajectory comprises reasonable steps and ends with a product that closely aligns with the user’s

query.

Accurate Verification with Helpful Feedback, Limited by Agent Ability Fig. [I4] presents a failure
case where, despite the verifier correctly identifying the issue and providing appropriate feedback, the
agent is unable to recover. The verifier advises the agent to calculate shipping costs before leaving
a review. However, the agent instead performs a sequence of poor actions, from which it never
recovers. This example demonstrates a central limitation of our agent: the performance is ultimately
constrained by the capabilities of the generator, regardless of the quality of the verifier.

Overly Strict Verification, Harmless Fig. |15|illustrates this dynamic in a borderline case. The
agent clicks on the first visible option without searching. Although this behavior is marked as correct
by automated scripts, the verifier rejects it, requiring the agent to explicitly search for the product.
After performing the search, the agent provides the same (correct) response, but is again rejected
for not clicking on the item to inspect its details. In this task, that step is arguably unnecessary, as
the required information is already visible. Still, the agent proceeds to click and confirm the details,
ultimately converging on the same answer a third time.

This example reveals two insights: (i) Even though the verifier is demanding, its feedback aligns well
with the user’s original intent, and does not prevent task completion. (ii) In fact, the strict verifier
elicits robust behavior from the agent. The benchmark task is relatively simple and susceptible to
shortcuts, but the verifier enforces a robust and generalizable strategy.

Overly Strict Verification, Harmful Fig. [T6|presents an example where a correct initial execution is
degraded into a failure. The user’s query accepts either “Ohio” or “Pennsylvania” as valid answers,
but the verifier demands the cheapest option across both. The agent, however, is unable to navigate
back to Ohio to perform a valid comparison and runs out of steps. This example also illustrates the
difficulty of interpreting real-world user intents, which are often vague and under-specified.

Overly Lenient Verification Our verifier remains susceptible to false positives, primarily due to
limitations in the underlying MLLM’s vision-language perception and reasoning capabilities.

Fig.|11|shows a failure on a relatively simple task in VisualWebArena that exposes this issue: both
the agent and the verifier fail to count the number of elements in an image correctly, resulting in
a false positive. This is a known weakness of current MLLMs Rahmanzadehgervi et al.| (2025))
that becomes even more problematic in our setting, where perception errors can compound across
multi-step trajectories.

A more complex failure is illustrated in Fig. [T2] which juxtaposes the verifier’s strengths and
weaknesses. The verifier successfully detects that the agent has terminated the task prematurely,
failing to submit a required comment. However, it misses two critical issues: (i) that the agent has
incorrectly counted the number of red keys in the image, and (ii) that it has posted the comment in
the wrong location. Accurately verifying these mistakes would require the detection of fine-grained
visual cues, knowing which small button the agent clicked on, for example.

We expect perceptual and reasoning abilities to improve in future MLLMs, and consequently, the
effectiveness of our SGV approach to increase as well, as the improvements it provides are largely
orthogonal to these capabilities. Alternatively, an interesting direction for future work would be to
augment the MLLM with specialist models focused on fine-grained perception tasks, such as object
counting or Ul element recognition, thereby enhancing the verifier’s accuracy in visually demanding
scenarios.
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D MAIN RESULTS - DETAILED BREAKDOWNS

D.1 OFFLINE EVALUATION OF AGENT TRAJECTORIES - BREAKDOWNS PER ENVIRONMENT

Table 6: Performance of MLLM verifiers on VisualWebArena Trajectories.

Model (a) No SGV (b) SGV (b) - (a)
Acc. TPR  TNR  Bias  dSkew Acc. TPR  TNR  Bias  dSkew Acc Bias  dSkew
Gemini 2.0 56 93 28 38 35 65 90 42 28 23 +9 -10 -12
Gemini 2.5 Lite 56 91 26 36 32 62 84 42 28 21 +5 -8 -10
Gemini 2.5 65 90 47 26 21 76 84 71 11 5 +11 -15 -16
Gemini-2.5 (T) 70 90 55 23 18 77 86 70 12 6 +7 -11 -12
GPT-4.1 Mini 59 94 31 35 31 72 84 62 11 4 +13 -24 =27
GPT-4.1 67 88 52 22 17 77 86 71 12 6 +10 11 -11
GPT-0l (T) 70 80 62 22 16 78 83 73 13 7 +7 -9 -8
04-Mini 73 89 59 17 11 79 86 73 8 3 +8 -9 -8
GPT-5 Nano 67 78 58 13 6 70 76 66 6 2 +4 -7 -4
GPT-5 (T) 77 83 71 8 3 81 81 81 1 0 +5 -7 3
Qwen3-32b 67 88 49 22 16 74 82 68 9 3 +7 -13 -13
Qwen3-235b-a22b 65 86 47 23 16 73 80 68 8 3 +8 -14 -13
Qwen3-235b-a22b (T) 66 85 50 20 13 75 83 69 9 3 +9 -11 -10
Llama-4-Maverick-17B-128E 62 85 42 24 17 67 80 56 16 9 +5 -9 -9
*(T) = Thinking enabled with the maximum thinking budget for the corresponding model.
Table 7: Performance of MLLM verifiers on evaluation of OSWorld trajectories.
Model (a) No SGV (b) SGV ®) - ()
Acc. TPR TNR  Bias  dSkew Acc. TPR TNR  Bias  dSkew Acc.  Bias  dSkew

Gemini 2.0 66 99 56 33 33 74 97 67 25 24 +8 -9 -9
Gemini 2.5 Lite 55 100 42 45 45 68 96 60 31 29 +13 -15 -16
Gemini 2.5 71 97 63 28 27 83 92 81 13 11 +13 -15 -17
Gemini 2.5 (T) 78 95 73 20 18 87 91 86 8 5 +9 -12 -14
GPT-4.1 Mini 60 99 49 40 39 75 99 69 24 24 +16 -16 -16
GPT-4.1 80 93 76 16 14 85 88 84 9 6 +5 -7 -8
GPT-04-Mini 84 87 83 6 3 90 85 91 4 2 +6 -2 -1
GPT-5-Nano (T) 76 90 72 19 16 81 90 80 14 10 +5 -5 -6
GPT-5 (T) 87 90 86 9 6 92 90 92 4 2 +6 -5 -4
Qwen3-32b 70 95 64 27 26 78 99 74 20 18 +8 -7 -8
Qwen3-235b-a22b 66 100 56 34 34 78 99 73 21 21 +13 -13 -14
Qwen3-235b-a22b (T) 66 100 56 34 34 78 99 73 21 21 +13 -13 -14
Llama-4-Maverick-17B-128E 58 100 46 41 41 63 99 53 35 35 +5 -6 -6

*(T) = Thinking enabled with the maximum thinking budget for the corresponding model.

D.2 ONLINE SUPERVISION - BREAKDOWNS FOR OSWORLD

Tab. [§] shows the performance of the base agent with and without verifier intervention across each of

the domains included in OSWorld.
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Base + SGV, + SGV,

Agent outcome verifier  verify every 5 steps
All 22 25 27
Chrome 29 30 35
GIMP 24 28 31
LO Calc 15 15 16
LO Impress 25 35 29
LO Writer 30 44 41
Multi Apps 8 9 13
(0N 36 39 42
Thunderbird 33 36 47
VLC 8 8 8
VS Code 57 62 57

Table 8: UlI-Tars-1.5-7b performance across OSWorld domains with and without SGV supervision. All numbers
are averages across three runs. More frequent interventions help prevent the agent from derailing into hard-to-
recover states, delivering superior performance.

D.3 ONLINE SUPERVISION - PERFORMANCE BREAKDOWN PER CONFUSION METRICS

figures/transitions-online-vwa/trafsiguireas/dgansmid ions-online-vwa/transition-no-sgv.j

(a) SGV (b) No SGV

Figure 3: Online performance transitions with and without SGV. The boxes in the left and right show
the performance of the base agent prior and after the MLLM Verifier intervention. The boxes in the
middle categorize the interventions as a false/true positive, false/true negatives.

Fig. [3| presents a breakdown of the performance gains discussed in Sec. [5| with and without SGV. The
flow (Failure—TN—Success) shows the percentage of tasks that were initially unsuccessful, were
correctly identified as such by the verifier, and subsequently became successful due to the verifier’s
feedback. The flow (0—FP—0) shows the percentage of tasks that were initially unsuccessful, were
incorrectly identified as successful by the verifier, and therefore remained unsuccessful. The flow
(1—-FN—1) indicates the percentage of tasks that were initially successful, were classified as a failure
by the verifier, but remained successful after its feedback.

As discussed in Sec. E} most of the SGV interventions are non-disruptive: (1 —-FN— 1) shows that the
majority of “FN” evaluations in SGV remains successful, while 14% of the tasks that were initially
unsuccessful become successful after corrective feedback from the verifier (0—TN—1). In contrast,
in the No-SGYV case, 35% of the unsuccessful tasks remain unsuccessful due to the lack of corrective
signal (0—FP—0). See Sec. [C.2]for examples, discussion, and a categorization of these patterns.

E ABLATIONS AND ADDITIONAL RESULTS

E.1 AGENTREWARDBENCH RESULTS
Tab. [9] shows the performance of the updated oracle evaluators in AgentRewardBench Men et al.

(2025). The original oracles in VisualWebArena exhibit relatively low alignment with human
annotations. After applying our fixes, the oracles reach near-perfect agreement to humans.

30



Preprint. Under Review.

Tab. [10|shows that the baseline MLLM Verifier used in our analysis of agreement bias is relatively
strong, setting a state-of-the-art on AgentRewardBench, while SGV further improves upon this,
surpassing even the original oracles included in VisualWebArenaE]

Taken together, these results help validate our experimental design. First, they show that our
observations on agreement bias are not artifacts of weak evaluators or flawed implementations.
Second, the strong performance of our baseline implementation reinforces the motivations discussed
in Sec. [3.2] for introducing stronger agents and environment corrections. In particular, the high
performance in AgentRewardBench is partly due to the fact that its trajectories are generated by
substantially weaker agents and include bugs in the BrowserGym suite |de Chezelles et al.| (2025)).
These issues often result in datapoints where agents fail for looping indefinitely or encountering
errors (e.g.: “Page not found” or non-working c1ick actions on select elements, see Sec.[F2),
which are comparatively easy for MLLM verifiers to detect.

Table 9: Performance of oracle evaluators in AgentRewardBench.

Original Improved Oracle

P 85.2 100
TPR 58.2 92
TNR 95.9 100
Acc 85.1 98

Table 10: Comparison of our verifier to the best performing judges in AgentRewardBench for the
VisualWebArena environment.

Method Precision
Rule-based (VWA Original Oracle) 85
Rule-based (VWA Our Oracle) 100
No-SGV Baseline (Gemini 2.5, no Thinking) 73
WebJudge (04) (SOTA) 75
SGV (Gemini 2.5, no Thinking) 80
No-SGYV Baseline (GPT-04) 80
SGV (GPT-04) 86

E.2 DISTRIBUTION OF VERIFIER RESPONSES ACROSS EVALUATION TEMPLATES

In Fig. [d] we show the distribution of MLLM Verifier responses across 28 scoring templates covering
both Likert, score-based, and other evaluation criterias (see Sec. @] for examples and our codebase
for all variations). We also include interventions aimed at mitigating biases in LLM evaluators, such
as rephrasing, criteria order shuffling and reversal, and syntactic structure changes|Chen et al.[(2025a);
Ye et al.| (2024). The following summarize main findings.

(1) MLLMs tend to concentrate their evaluations at the high end of the scale, largely independent of
interventions and how the evaluation is framed.

(2) MLLMs rarely express uncertainty, even on ambiguous cases, when the evaluation template
explicitly includes an “uncertain” option, and reserves the highest score for high-confidence success.

(3) Likert scales tend to produce slightly more balanced distributions compared to numeric-based
scales.

(4) Binary scales can exacerbate bias toward favorable evaluations. Including a third option to allow
the model to “offload” evaluations into “partial success” helps mitigate this effect. Three-way scales
seems sufficient to achieve this effect, with no meaningful differences observed for more granular
scales.

"Note that in AgentRewardBench, the primary leaderboard metric is precision, which is directly proportional
TPR-

. . P fad _ PR-s —
to metrics used in our analysis: Precision = TPR s TNR) (1=3) * S = SuccessRate.
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(5) SGV leads to a more balanced distribution of scores for all templates.

(6) These observations align with discussions in Sec. suggesting root causes stemming from
inherent limitations of RLHF that conflates human rater satisfaction with truthfulness|Sharma et al.
(2025) and knowledge extraction bottlenecks depending on how the information is presented Allen+
Zhu and Li (2024ab), with SGV mitigating these issues effectively.

figures/distribution/legend.pdf

figures/distribution/numeric.pdf

(a) Numeric-based scales

figures/distribution/likert.pdf

(b) Likert-based scales

Figure 4: Distribution MLLM verifier responses across numeric and Likert-scales.

E.3 CALIBRATION OF MLLM VERIFIER DISTRIBUTIONS: LIMITATIONS AND OPPORTUNITIES

This section extends the observations in the main text regarding agreement bias and the tendency
of MLLMs to assign disproportionately high confidence scores. Specifically, we examine whether
post-processing calibration techniques can address the skewed distributions exhibited by MLLM
verifiersSec. [E.2] and provide a proof-of-concept experiment on the potentials for sampling-based
techniques that take into account the skew created by agreement bias.

E.3.1 PLATT CALIBRATION OF MLLM-VERIFIER OUTPUTS

We first evaluate Platt and Isotonic calibration of confidence scores generated by MLLMs under
«Range-based Scale, implicit» template illustrated in Sec. We focus on VisualWebArena, where
the distribution of agent successes and failures is relatively balanced (47% success, 53% failure). We
use our representative subset(Sec. for testing and train the calibrator on the remaining trajectories
( 605 examples). The threshold separating success from failure is optimized using Youden’s J

2We observe that letting the MLLM freely generate a confidence provides inferior results compared to
providing some grounding on the confidence scale, as in the utilized template. Therefore, for confidence
generation we adopted the latter variation, mapping 1-10 scores to 0-1 during calibration.
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statistic on the training set, and we additionally report the Area Under the Curve (AUC) statistic for
completeness.

Tab. [[T]reports evaluation metrics before and after calibration, compared to SGV under the same
template. In summary:

* We do not observe meaningful gains from applying Platt scaling to the generated confidences.

* This is explained by the skew in MLLM score distributions discussed in Sec.[E.2} and shown
in Tab. MLLMs overwhelmingly assign labels at the upper end of the scale, leaving Platt
scaling with no granularity to exploit and causing large clusters of identical scores to map
to the same calibrated probability. The same issue arises with other methods, such as an
isotonic transform.

¢ In line with Sec. results, SGV leads to a substantially more balanced distribution of
scores, with corresponding gains in evaluation metrics.

* We highlight these findings seems not an artifact of prompt design/template: as SGV results
show, it is possible to obtain more balanced distributions under this evaluation design.

Table 11: Calibration of MLLM verifier confidence scores

Metric ‘ Before Calibration Platt SGV

ACC 63 65 72
TPR 92 92 82
TNR 37 40 64
Bias 29 28 10
dSkew 25 23 4

AUC 65 65 74

Table 12: Platt scaling vs. SGV — distribution of confidence scores.

Score bucket ‘ Before Calib. Platt Isotonic SGV

[0, 0.1) 10% 11% 16% 6%
0.1, 0.2) 2% 10% 0% 8%
(0.2, 0.3) 5% 3% 4% 13%
0.3, 0.4) 4% 1% 4% 5%
(0.4, 0.5) 2% 1% 1% 1%
[0.5, 0.6) 2% 4% 4% 3%
0.6, 0.7) 1% 0% 0% 4%
[0.7, 0.8) 1% 0% 0% 4%
0.8, 0.9) 0% 0% 0% 3%
0.9, 1.0] 4% 0% 0%  55%

E.3.2 PROOF-OF-CONCEPT: CALIBRATION OF SAMPLING-DERIVED PROBABILITIES

We further explore whether calibration is more effective when applied to probabilities estimated via
sampling. Specifically, for each of the 910 trajectories in VisualWebArena, we sample 8 completions
and estimate empirical probabilities by measuring the proportion of times the MLLM labels a
trajectory as a success or failure under the best-performing template across the 28 tested—the ternary
Likert scale used in our baselines. To test the Platt calibrator, we utilize our 1/3-sized representative
subset that provides the same distribution as the full benchmark, and we train it on the remainder of
the data (605 datapoints). In both cases, the data is roughly balanced, with 47% success and 53%
failed trajectories.

Before discussing results, we highlight this experiment is a proof-of-concept under relatively ideal
and computationally expensive conditions. Particularly:
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* The calibrator is trained and tested on datasets with roughly equal numbers of success and failures.

* It assumes access to the high-quality labels provided by our improved VisualWebArena oracles
( Sec.[3.3)—a limitation in real-world settings that motivates the need for MLLM verifiers in the
first place.

* Training and test domains match; i.e., we do not consider out-of-distribution generalization.

* To estimate probabilities, we sample a relatively large number of completions (8 per trajectory,
totaling over 7,200 generations).

* The thresholds used to separate classes—which, as shown below, can be a sensible choice—are
optimized under these same ideal conditions.

* At test time, we still generate 8 completions per new trajectory for probability estimation, and apply
the calibrator to them.

Results are shown in table Tab.[T3] In summary:

* Vanilla majority voting fails to deliver improvements for not taking into account the skew in MLLM
label distributions toward positive evaluations.

* Leveraging this fact to apply a calibration to MLLM implicit probabilities leads to more balanced
distributions and improvements in evaluation metrics.

* Most notably, SGV lead to distributions superior than the calibrated ones obtained in ideal scenarios
through a single generation. Importantly, this arises organically by leveraging the model’s own
sampling mechanisms, without the need for ground-truth labels, additional training, or calibration
steps. Moreover, these gains naturally extend to other domains, as demonstrated by SGV’s
improvements across benchmarks.

* SGV also avoids complicated hyperparameter tuning such as calibration thresholds. As shown in
columns *p15° and ’0.5’, setting this threshold to either the 15th percentile (bootstrap-estimated) or
naively to 0.5 can eliminate the gains from Platt scaling.

Taken together, these results point to some important implications. First, they reinforce that SGV’s
effectiveness stems from mitigating the intrinsic bias present in MLLM response distributions.
Secondly, they suggest a potential for both training-time and test-time approaches that explicitly
account for the asymmetries introduced by agreement bias—e.g., loss functions that penalize such
imbalance, or adjustments to sampling mechanisms for methods that rely on sampling (e.g., GRPO).
Since SGV itself induces more balanced output distributions, incorporating SGV into larger pipelines
may also be fruitful—e.g., as a replacement for oracle labels in methods like the one above.

We hope that our identification of agreement bias, our demonstration of the risks it poses for
applications relying on MLLM verifiers, our evidence on the benefits of mitigating this bias to
downstream applications, and the insights provided help motivate further research in this direction.

Table 13: Platt scaling vs. SGV using sampling-derived probabilities under a ternary Likert template.

Metric ‘ NOSGVtemp:() NOSGVmaj Platt Plattp15 Platt(),s SGVtemp:() SGVmaj SGVPlan

ACC 65 65 72 69 71 76 75 78
TPR 92 93 77 85 86 84 85 79
TNR 41 40 68 56 57 71 67 78
Bias 27 28 6 20 16 11 11 1

dSkew 23 24 2 15 9 5 5 0
AUC 67 66 73 75 75 76 76 83

E.4 OUTCOME VS PROCESS-BASED VERIFICATION

For some domains, such as OSWorld, certain actions can be more destructive, pushing the agent into
states that are difficult or impossible to recover from—for example, deleting a file. This naturally
raises an important question: when should a verifier be invoked? While we leave a full exploration
to future work, Tab. [I4] provides initial evidence for the promise of this direction, particularly when
equipped with verifiers that know when to intervene in the first place. We examine two configurations:
one in which the MLLM verifier intervenes only after STOP actions (the “Outcome-based” setting),
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and another in which it evaluates trajectories periodically every 5 steps. As observed, the qualitative
conclusions mirror those in the main text: a baseline MLLM verifier yields only modest improvements,
whereas SGV consistently produces substantial gains in both configurations, with slightly better
results when verification is more frequent. More generally, we view the study of process and outcome-
based verification (Ren et al.} [2023}; [Lightman et al.| [2023}; [Shao et al., [2024b; Setlur et al.l 2025}
Swamy et al.l 2025) in digital environments as an exciting direction for future work, particularly due
to their often discrete state-space representation that makes process reward modeling more amenable.

Table 14: Agent Performance across OSWorld and VisualWebArena under different verification modes.

Verification Mode ‘OSWorld VisualWebArena

Baseline Agent ‘ 21.7 45.0
No SGV
+ Outcome-based 234 46.1
+ Every 5 Steps 24.3 46.9
SGV
+ Outcome-based 24.9 54.0
+ Every 5 Steps 26.5 54.9

E.5 IMPACT OF TRAJECTORY LENGTH ON VERIFIER PERFORMANCE

Some tasks in the digital world can require long trajectories, which raises the question of how verifier
performance is affected. In Tables [I5]and [I6] we examine MLLM verifier performance stratified
by trajectory length in OSWorld and in an extended 60-step configuration of VisualWebArena. To
increase the number of samples per bucket and improve statistical stability, we average results across
three comparable MLLMs (GPT-4.1, Qwen3-VL, and Gemini 2.5). Across both benchmarks, several
consistent patterns emerge. First, SGV continues to reduce bias and skewness and improves TNR
and accuracy for all trajectory lengths, reinforcing the robustness of the method. Second, verifier
performance tends to increase with trajectory length. As reflected by the low success rates in longer
trajectories, this pattern arises largely because longer trajectories typically indicate that agents have
drifted further from the task objective, making failures easier for verifiers to detect. For example,
UI-TARS repeatedly opening irrelevant applications, or performing destructive operations like file
deletions in OSWorld.

This observation reinforces an important methodological point raised in Sec.[3.3} to evaluate verifiers
meaningfully—and to surface limitations such as agreement bias—it is essential to use strong agent
policies (like our VisualWebArena agents) that produce high-quality trajectories.

While our results show no degradation in performance at longer trajectory lengths, we acknowledge
that the combination of strong agents and long trajectories may introduce new challenges, including
amplified agreement bias or yet-unidentified failure modes. However, a full examination of these
factors under the current state of benchmarks and agents is challenging: unless tasks inherently
require long trajectories and agents can reliably produce them, disentangling these factors without
introducing confounders is non-trivial. In Sec. [E.6| we partially address this limitation, varying agent
quality in VisualWebArena while keeping trajectory length fixed. Experiments reveal that (i) verifier
performance degrades when the verifier is weaker than the agent, specifically due to an increase in
agreement bias, and (ii) SGV consistently improves outcomes across all settings.

35



Preprint. Under Review.

Table 15: MLLM verification performance by trajectory length in VisualWebArena.

Metric | Al 1-5  6-19 >20
% Success 47 57 36 17
N Samples 2730 1587 1218 198
% Traj. 100 58 45 7
No-SGV
ACC 67 68 61 65
TPR 90 91 88 64
TNR 48 40 46 65
Bias 24 22 30 22
dSkew 19 17 26 16
SGV
ACC 74 73 72 82
TPR 82 84 81 66
TNR 67 60 67 85
Bias 10 9 14 6
dSkew 5 4 8 2
A (SGV - No-SGV)
ACC +7 +5 +11 417
Bias -14 -13 -16 -16
dSkew -14 -13 -18 -14

Table 16: MLLM verification performance by trajectory length in OSWorld.

Metric | AD 1-10 11-20 21-30 >30
% Success 22 54 20 16 2
N Samples 1044 300 198 111 435
% Traj. 100 29 19 11 42
No-SGV
ACC 76 71 59 67 89
TPR 96 97 97 89 67
TNR 70 41 49 63 89
Bias 22 26 40 29 10
dSkew 21 24 39 27 9
SGV
ACC 83 77 75 81 94
TPR 91 90 97 88 67
TNR 81 61 70 80 94
Bias 12 13 24 14 5
dSkew 10 8 23 14 5
A (SGV —=No-SGYV)
ACC +7 +6 +16 +14 +6
Bias -10 -13 -13 -15 -5
dSkew -11 -16 -13 -13 -4

E.6 CROSS-MODEL VARIATIONS AND VERIFICATION DIFFICULTY

In Sec. ] we discuss how verification is affected by verification difficulty when comparing perfor-
mance of a weaker agent in OSWorld and VisualWebArena. The results in Tab. [I7|complement those
findings by exploring variations in model strength between the models used to build the agents (or
“generator”’) and the verifiers while keeping the environment constant (VisualWebArena). In summary,
results show that:
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(i) Agreement bias occurs both when the verifier is stronger or weaker than the generator, and when
agents and verifiers are built from models of distinct families and size.

(ii) Verification performance is worse when the verifier is weaker than the generator (e.g., Gemini
2.0 verifies Gemini 2.5-based agent), particularly due to an increase in agreement bias (note TPRs
actually increase).

(iii) SGV remains effective in all configurations, providing substantial improvements over the no-SGV
baseline.

Table 17: (No SGV, SGV) performance across verifier-generator configurations in VisualWebArena. G-2.5 and
G-2.0 refer to Gemini-2.5-Flash and Gemini-2.0-Flash, respectively.

Verifier G-2.5 G-2.5 G-2.5 G-2.0 G-2.0
Agent G-2.5 G-2.0 GPT4o G-2.5 GPT4o
Acc (65,76) (70,78) (68,77) (56,65) (55,65)
TPR (90,84) (84,77) (80,76) (93,90) (85,74)
TNR (47,71)  (63,79) (63,77) (28,42) (42,61)
Bias (26, 11)  (20,7) (20,8)  (38,28) (35,19
dSkew (21,5) 14,2) (13,3)  (35,23) (30,12)
Agent Success Rate 47 33 31 47 31

A Acc 11 8 8 9 9

A Bias -15 -13 -12 -10 -16
A dSkew -16 -12 -11 -12 -18

E.7 ABLATIONS TO SGV EXTRACTION AND VERIFICATION STEPS

Tab. [18|presents ablations for results in Sec. 4{ where we (1) start with a conventional MLLM verifier,
(2) add a prior generation step, (3) decouple prior generation and verification steps without modifying
any of the prompts, and (4) add a separate prompt for the prior generation step. In all cases, we
include a CoT instruction. Prompt templates are provided in Sec.[B.8]

Table 18: Ablation results for SGV’s two-step mechanism.

#  Method Accuracy (%) TPR (%) TNR (%) Bias(%) dSkew (%)
1 Base MLLM Verifier 65 90 47 26 21
2 + First Step 66 90 49 25 20
3 SGYVY, Unified 74 85 67 14 8
4  SGV 76 84 71 11 5

The conventional MLLM-based verification yields suboptimal performance, with slight improvement
when a prior generation step is added (rows 1-2). One reason for this behavior is that when steps
are combined, models tend to generate priors that align to information in their context window—a
manifestation of agreement bias—reducing their effectiveness in grounding the verification. De-
coupling the steps improves performance (rows 3—4), with SGV achieving similar results with or
without specialized prompts. This suggests that SGV’s effectiveness does not stem from prompt
specialization and that it can be integrated easily with minimal modifications to existing codebases.

E.8 ADDITIONAL ABLATIONS: PRIOR DIVERSITY, GROUNDING TOOLS, AND QUALITY OF
FIRST-STEP GENERATION

In this section, we examine the effect of prior diversity on SGV performance and analyze the

robustness of SGV under various prior-generation strategies. Across both sets of experiments, we
observe that increasing the diversity of priors can enhance verification performance, while repeated
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sampling or increased temperature within a single model family yields diminishing returns. We
further demonstrate that alternative grounding strategies, such as providing web-search tools, fail to
meaningfully mitigate agreement bias, and that SGV remains effective when prior generation is noisy
or produced by weaker models, highlighting the stability of the mechanism.

Effect of Prior Diversity. To study how the diversity of first-step priors affects verification perfor-
mance, table Tab. [I9|reports results for four configurations: (1) a single prior generated from the
same verifier model at high temperature; (2) a single prior from a model of a different family; (3) a
concatenation of three priors sampled from the same model; and (4) a concatenation of three priors
produced by three distinct model families. For reference, we include the baseline SGV and No-SGV
settings. In all cases, the verifier model is Gemini-2.5-Flash with 0 temperature.

In summary, results shows that:

* Diverse priors improve performance. Incorporating priors from multiple model families (Column
5) yields the strongest results, suggesting that epistemic diversity provides additional useful signal
for verification.

* Increasing temperature or sampling within a model offers limited benefit. Columns 1 and 4
demonstrate that once the first-step prior has been generated, additional variability from the same
model yields marginal gains, indicating that most of the benefit is captured in the initial SGV step.

Table 19: Ablations on prior diversity.

Seting | Bolne Baseime D @ @ @ ®
First Step - Gu—o) Guezy Q GP G(k=3) G+Q+GP (k=3)
Verify G G G G G G G
Acc 65 76 7 716 76 78 79
TPR 90 84 84 84 84 87 82
TNR 47 71 7170 70 70 76
Bias 26 11 111 12 6
dSkew 21 5 5 5 5 7 2

Legend: G = Gemini 2.5 Q=Qwen3-VL GP=GPT-5 t=temperature

Effects of Grounding Tools, Noisy Priors, and First-Step Model Strength. To further investigate
agreement bias, and the effectiveness and robustness of the SGV mechanism, Tab.[20|compare MLLM
verification performance in the following settings:

(1): No first-step prior generation, but provide the verifier a Web Search tool to ground the verifica-
tion (Gou et al.);

(2): SGV, where prior generation is supported by a web search tool;
(3) SGV, where prior generation is produced by a weaker variant of the same model;
(4) SGV, where we inject into the generated priors a random noiseShao et al.| (2025)

(5): No SGYV for a thinking variant of Gemini, but provide the verifier a Web Search tool to ground
the verification

(6): SGV with thinking enabled, where priors are generated with thinking disabled.
In summary, results indicate that:

* In contrast to SGV, providing grounding tools such as web search to the verifier alone does not
yield meaningful mitigation of agreement bias;

 Extracting knowledge from the own model seems sufficient, with the addition of web search not
providing meaningful improvements;

* Weaker and non-thinking models can produce priors that are sufficiently informative for effective
verification for stronger or thinking models;
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* The similar performance of SGV with and without Web Search, the near-identical performance of
Gemini-Thinking when priors are generated with or without thinking (6 vs. SGV baseline), and
the comparable performance when thinking is fully disabled versus fully enabled all suggest that
SGV’s first-step mechanism accounts for the vast majority of the gains, and largely exhausts them.

* SGV remains effective even when the first-step generation is noisy, indicating that the method is
robust to some degree of noise in the first-step prior generation;

Table 20: Effects of Grounding Tools, Noisy Priors, Priors with weaker and stronger models.

. NoSGV SGV NoSGV SGV
Setting ‘ Base @ Base @ G @ Base (T) ®) Base (T) ©)
First Step - - G G + Web G-Lite G + Noise - G (T) + Web G (T) G
Verify G G + Web G G G G G (T) G (T) G (T) G (T)
Acc 65 64 76 74 74 73 69 66 77 76
TPR 90 92 84 84 82 81 90 73 86 86
TNR 47 44 71 65 69 68 55 61 70 68
Bias 26 29 11 17 11 14 23 10 12 13
dSkew 21 26 5 10 5 8 18 4 6 7

Legend: Base = baseline; G = Gemini-2.5-Flash; G-Lite = Gemini-2.5-Flash-Lite (T) = Thinking enable with
max thinking budget; Web = Web Search Tool provided.

E.9 ONLINE SUPERVISION AND SGV WITH WEAKER MODELS

Tab. 21| shows the performance of online verification with and without SGV on the full VisualWe-
bArena benchmark utilizing gemini-2.0-flash, a weaker model than the one used in Sec. E}
Consistent with findings in Sec. 5] the no-SGV verifier fails to improve performance and even results
in degradation in certain domains. In contrast, SGV consistently improves results across all domains,
achieving a 3 percentage point gain overall (9% relative improvement).

Table 21: Task success rates (%) on VisualWebArena with and without SGV
using gemini—-2.0-flash as the base MLLM.

Method Al VWA  Shopping Reddit  Classifieds
Base Agent 36 38 27 41
+ Verifier, no SGV 36 39 27 40
+ Verifier, SGV 40 41 29 46

F ADDITIONAL DETAILS AND RESULTS FOR VISUALWEBARENA

F.1 VISUALWEBARENA LITE

Running the full VisualWebArena benchmark is time-consuming, hindering prototyping, experimen-
tation, and ablation studies. To address this issue, we release VisualWebArena Lite, a representative
subset of tasks that preserves the performance trends observed on the full benchmark, while consisting
of only one third of the tasks. At a high level, the subset is built by iteratively adding and removing
tasks to match the distribution of templates and other characteristics such as task difficulty, while
ensuring that the aggregate success rate within each domain remains close to that of the full set for a
given agent.

To avoid introducing bias toward our implementations, we construct the subset based on the perfor-
mance of Search Agent|Koh et al.|(2024b)), for which task-level scores are publicly available.

Tab. [22] compares task success rates across agents and model families on both the full benchmark and
the subset. The differences in success rate between the full benchmark and the subset range from
0 to 1 percentage point, while execution time and token usage are reduced by approximately 67%,
substantially accelerating the development cycle and lowering inference costs. Moreover, note the
performance gain of the base agent + Verifier over base agent is approximately 4.5 pps on the full
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benchmark and the representative subset, indicating that meaningful signals of iterated versions of
similar agents are preserved, allowing for effective prototyping and ablation studies.

Table 22: Task success rates (%) in VisualWebArena for the full benchmark and the representative
subset VisualWebArena Lite (VWA Lite).

Method Model (a) Full Benchmark (b) VWA Lite (b-a)

All Shop. Reddit Class.  All Shop. Reddit Class. All
Search Agent|Koh et al.[(2024b) GPT-4o0 27 29 21 30 28 29 22 30 +0.3
ReAct Gemini 2.0 36 38 27 41 36 35 26 43 -04
ReAct + SGV Gemini 2.0 40 41 29 46 40 40 31 47  +0.2
ReAct Gemini 2.5 47 49 36 52 46 47 35 52 -0.8
ReAct + SGV Gemini 2.5 54 58 44 56 54 57 42 59  -0.1
Number of Tasks 910 466 210 234 305 156 70 79 -
Token Usage (millions)* 104 54 29 21 34 18 10 6 -

* Token usage measured for Gemini 2.0 (Base Agent + SGV).

F.2 ENVIRONMENT REFINEMENTS

As discussed inSec. [3.3] we make several improvements to the (Visual) WebArena environments to
address bugs and provide a more reliable evaluation setup for MLLM verifiers. The following outline
some of the major upgrades. For more details, please check the documentation in our codebase.

Proper Environment Paralellization. Resetting and parallelizing environments is a known issue
in (Visual)WebArenﬂ partially due to hard-coded dependencies between task configurations and
Docker instances. This not only slows down evaluation but also prevents proper resets between
episodes, leading to potential state leakage across tasks and unreliable evaluations. For example,
some issues in the BrowserGym suite de Chezelles et al.| (2025) observed in AgentRewardBench Men
et al.| (20235)) trajectories arise from failures to renew cookies and session data between episodes.
These failures cause agents to end in unexpected states during execution, making some tasks easier to
detect as failures during verification.

Therefore, we refactored the environment code to allow proper resets and parallelization, enabling
faster and more reliable evaluations. In Table Tab. 23] we report the speedup gains obtained with the
environments we release. When considering our representative subsets, these gains can reach up to
20x, substantially reducing evaluation cost, facilitating rapid prototyping, and enabling more faithful
evaluation due to proper environment resets.

Table 23: Evaluation runtime statistics.

Speedup Total Time Avg/ Task

Original

Full 910 tasks - 2d:20h:09m 04:31m
Full 910 tasks + Reset - 3d:18h:31m 05:58m
With Parallel Envs (5)

Full 910 tasks” 7% 12h:13m 00:50m
Eval Set” 21 x 04h:04m 00:50m

* Reset by default.

Updates to Oracle Evaluators and Task Configurations. We aimed to fix only issues whose
resolution involved no subjective judgment. Below, we summarize and illustrate the primary classes
of issues and their corresponding fixes. Full documentation is provided in our codebase. See Sec.
for a comparison of the original and revised oracles evaluated against human annotations.

*https://github.com/web—arena-x/webarena/issues/88
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(1) Mismatch between intent and oracle requirements. Some task configurations included requirements
that are not explicitly stated in the original user intent. Where possible, we added minimal instructions
to the intent to clarify these requirements. Examples:

* Original Template: Find me the <item> with <attributes>

* Explanation: The oracle requires navigating to the item’s page to complete the task, although
this is not stated in the intent. We append the instruction: \n 7o finish the task, please make
sure to navigate to the page of the corresponding item.

Revised Template: Find me the <item> with <attributes>.\nTo finish the task, please make
sure to navigate to the page of the corresponding item.

Original Template: Navigate to my listing of <object> and change the <attribute> to
<target>.

Explanation: The oracle requires submitting the changes, though the intent does not specify
this. We append the instruction: \nPlease make sure to submit the changes.

Revised Template: Navigate to my listing of <object> and change the <attribute> to
<target>\nPlease make sure to submit the changes.

(i1) Incorrect annotations. We corrected task configurations that referenced incorrect target items,
linked to the wrong pages, or included incorrect price values or strings.

(iii) String parsing bugs. We resolved issues in the handling punctuation, number formats, special
characters, and timezones for evaluators based on string comparisons.

(iv) False-positive evaluators. We refined evaluators that previously misclassified failures as successes.
For example:

» Some tasks contained no valid targets matching the user’s stated constraints. In such cases,
the original oracles sometimes awarded a score of 1 even if the agent performed only random
or no actions. For tasks such as Subscribe to all subreddits that start with the letter {{letter}}
and have a {{object}} image in their top posts, the original evaluator only checked that no
new subscriptions appeared. We introduced /ax evaluators that verify whether the agent at
least visited pages with partial URLs corresponding to candidate subreddits.

For tasks of the form Navigate to <target> that contains a picture of <object>., the original
oracle ran a BLIP-2 classifier over all images on the page and awarded success if any
image matched. This led to two issues: (i) numerous small, unrelated, or out-of-viewport
thumbnails were included, and the model frequently assigned a score of 1 to at least one
of them; and (ii) other requirements, such as navigating to the correct <target> page (e.g.,
a post’s comments section), were not enforced. We therefore added checks ensuring that
the trajectory contains characteristic DOM elements or URLs associated with the intended
<target> page, ensuring elements and URLs that are common across all instances to not
introduce false negatives.

(v) Fuzzy-match evaluators. Some tasks rely on LLM-based evaluators with predefined prompts
and privileged information. We refined prompt templates to reduce both false positives and false
negatives, while leaving annotations unchanged.

Bug Fixes and General Improvements.

We introduce other several improvements to the VisualWebArena environment, including enhanced
action parsing, dynamic waiting for page-load completion and environment resets, refinements to the
Set-of-Marks representation, correct handling of tab metadata, scroll-bar rendering, incorporation of
additional models for fuzzy-match evaluation, and hosted inference for the captioning model. All
changes are implemented at the environment level so that subsequent research can directly benefit.
Tab. [24] shows agent performance before and after the environment upgrades described in this section,
demonstrating relevant improvements across all configurations. We encourage readers to explore our
codebase and make use of any components that may be helpful to their own research.

To illustrate, one notable upgrade involves interactions with HTML select elements. Many
VisualWebArena tasks require choosing values from dropdown menus—for example, sorting product
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lists or applying category filters. In the original environment, these interactions could not be reliably
handled using standard click actions due to Playwright limitations, requiring augmentation of
the action space with specialized select actions. In the original environment, these interactions
could not be reliably performed using standard c1ick actions due to Playwright-related limitations,
effectively requiring augmentation of the action space with specialized select operations. The
later approach introduces two issues: (i) agents may still fall into infinite loops when repeatedly
attempting ineffective c11ick actions on select options, and (ii) agents become less comparable
to mouse-only baselines.

To address this, we upgrade the environment so that standard c11ick actions correctly trigger and
select options from select elements. Fig.[5](left) shows a trajectory from AgentRewardBench
generated via the BrowserGym suite [de Chezelles et al.| (2025), while the right panel shows the same
webpage in our upgraded enviroment. Before the fix, options within the dropdown are not recognized
as interactable elements and therefore cannot be clicked. After the fix, they are correctly exposed in
the representation, receive bounding boxes, and can be selected using standard c1ick actions. We
note the environment remains compatible with specialized select actions (also provided in our
codebase, but not used in any of our results).

figures/bug_fix/before_fix.png figures/bug_fix/after_ fix.png

(a) Before fix (b) After fix

Figure 5: Bug fix in select elements. Left: Snapshot of a trajectory included in AgentRewardBench
generated with the BrowserGym suite. Right: Snapshot of the same state after fixes to the handling
of select elements.

Table 24: Task success rates (%) on VisualWebArena using gemini-2.5-flash as the
base model, before and after environment refinements.

Method All VWA  Classifieds  Reddit  Shopping
Base Agent - Before Refinements 41 46 35 42
Base Agent - After Refinements 47 49 36 51
Agent + SGV - Before Refinements 48 53 42 49
Agent + SGV - After Refinements 54 56 43 58
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G ADDITIONAL FIGURES

G.1 EXAMPLES OF TASKS IN DIGITAL BENCHMARKS

figures/task_examples/shopping.png

figures/task_examples/reddit.png |figures/task_examples/classifieds.png

figures/task_examples/osw_glasses.gri@ures/task_examples/osw_slides.png

Figure 6: Examples of tasks in VisualWebArena and OSWorld. Top row: a query composed of natural
language and an image, followed by the initial state screenshot. Second and third rows: natural
language queries with corresponding initial state screenshots.
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G.2 AGREEMENT BIAS

Buy the cheapest deodorant from the “Deodorants & Antiperspirants” category with the phrase

1MAIES/ killer on the packaging.

figures/figs_bias_2/(.phiggures/figs_bias_2/1.gngures/figs_bias_2/7.png

type [7] [deodorant killer] click [52] stop [The deodorant has
[1] been added to your cart
successfully.]

Verifier Responses

MLLM Verifier

REASONING: The assistant has successfully added the cheapest deodorant with “killer” on the packaging to the cart. The product meets
the criteria of being in the “Deodorants & Antiperspirants” category and having the phrase “killer” on the packaging. The assistant has
completed all necessary steps to achieve the objective.

EVALUATION: SUCCESS

MLLM Verifier + Task-Specific Evaluation InstructionsPan et al.| (2024a))

Thoughts: The agent successfully added the Men Deodorant 48-hour Odor Protection Clean Comfort Deodorant for Men Original
Antiperspirant Deodorant Odor Protection Sport Mens Deodorant Stick to the cart, which matches the user’s intent to buy the cheapest
deodorant with ‘killer’ on the packaging. The task is completed successfully.

Status: success

Two-Step Verifier

REASONING: The assistant successfully searched for “deodorant killer” and added the first item to the cart. However, the objective was to
find a deodorant with the word “killer” on the packaging and to buy the cheapest one. The assistant did not verify if the product contained
the word “killer” on the packaging, nor did it sort the results by price to find the cheapest option.

EVALUATION: PARTIAL SUCCESS

SGYV - First Step Generation

To accomplish the task of buying the cheapest deodorant with the phrase ‘killer” on the packaging from the “Deodorants & Antiperspirants”
category, the following steps are typically taken on the web:

1. **Navigate to the Relevant Category**: Locate and click on the category that includes deodorants and antiperspirants. This is usually
found in the “Beauty & Personal Care” section or a similar category.

2. **Search for the Specific Product**: Use the search bar to enter keywords such as “deodorant killer” to filter the results to only show
deodorants with ‘killer’ on the packaging.

3. **Filter and Sort Results**: Apply filters to narrow down the search results to only include deodorants. Then, sort the results by price,
selecting the option to display the cheapest items first.

4. **Review Product Listings**: Look through the filtered and sorted list to find the cheapest deodorant that meets the criteria. Check the
product images and descriptions to ensure the word ‘killer’ is present on the packaging.

5. **Examine product details (if necessary):** If a product’s listing doesn’t clearly show the packaging or include the keyword in the
title/description, you might need to click on the product to view its detailed page. This page often provides more images, a full description,
and sometimes customer reviews that might mention details about the packaging.

6. **Add to Cart**: Once the correct product is identified, click the “Add to Cart” button to add it to the shopping cart.

7. **Proceed to Checkout**: Navigate to the cart and proceed to checkout to complete the purchase.

Figure 7: Agreement Bias. Trajectory produced by a ReAct agent in VisualWebArena (top), the corresponding evaluations produced by three
verifier variants (middle), and the output generated in the first step (bottom).
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imagels/ Buy the least expensive red blanket (in any size) from the "Blankets & Throws" category.

figures/figs_biasfOgungs/figs_biasflgpngs/figs_biasfR2guwngs/figs_bias/3.png

scroll [down] click [70] type [7] [red blanket] click [34]

figures/figs_biagf/idppres/figs_bias/igwpres/figs_biagf/icpmres/figs_bias/7.png

click [26] click [29] click [32] stop [The least
expensive red blanket
has been added to the
cart.]

Verifier Responses

MLLM Verifier

REASONING: The assistant successfully navigated through the website, searched for "red blanket," and identified the least expensive red
blanket available. The assistant then proceeded to the product page, selected the required options (color and size), and added the item to the
cart. All necessary steps were executed correctly to fulfill the objective.

EVALUATION: SUCCESS

MLLM Verifier + Task-Specific Evaluation InstructionsPan et al.| (2024a))

Thoughts: The agent successfully adds a red blanket to the cart. The user’s intent is to buy the least expensive red blanket. The agent
first searches for "red blanket", then clicks on the first item, which is a red blanket. The agent then clicks on "Add to Cart". The agent’s
response "The least expensive red blanket has been added to the cart." is misleading, because the agent did not explicitly compare the prices
of different red blankets. However, since the agent added a red blanket to the cart, and the user’s intent is to buy the least expensive red
blanket, I will mark this as a success.

Status: success

MLLM Verifier + SGV

REASONING: The assistant has successfully added a red blanket to the cart, which is a crucial step towards the objective. However, the task
is not fully accomplished as the assistant needs to ensure that the added blanket is indeed the least expensive red blanket in the "Blankets &
Throws" category. The assistant should have first navigated to the "Blankets & Throws" category, filtered for red blankets, and sorted by
price to find the least expensive option. The current action of adding a blanket to the cart without verifying its price relative to other options
in the category is premature.

EVALUATION: PARTIAL SUCCESS

Figure 8: Agreement Bias. Trajectory produced by a ReAct agent in VisualWebArena (top), and the corre-
sponding evaluations produced by three verifier variants (bottom).
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imagels/ Buy the least expensive canvas print with grapes from Posters & Prints category.

figures/figs_biddidupeayifdgtvd ia iasaSleéindrsgive_oracle/5.png

type [7] [canvas print click [30] click [34]
with grapes]

figures/figs_bias_3_permissive_oracle/9.png

stop []
Verifier Responses

MLLM Verifier

REASONING: 1. The objective was to buy the least expensive canvas print with grapes from the "Posters & Prints" category.

2. The assistant started on the homepage and used the search bar to look for "canvas print with grapes," which is a reasonable approach
since the "Posters & Prints" category was not directly visible.

3. The search results included several canvas prints featuring grapes. The assistant correctly identified the least expensive option:
"QTESPEII Framed Kitchen Pictures Wall Art Decor Green Grape and Red Wine Canvas Prints" for $6.99.

4. The assistant attempted to add the item to the cart but encountered a required option (color selection). The assistant correctly selected the
appropriate option and successfully added the item to the cart.

5. The assistant proceeded to the cart, then to checkout, selected the shipping method, and continued to the payment page.

6. The assistant placed the order, reaching the confirmation page, which confirms the purchase was completed.

7. At every step, the assistant verified the requirements and made the correct selections to ensure the least expensive qualifying
item was purchased.

EVALUATION: SUCCESS

MLLM Verifier + SGV

REASONING: 1. The objective is to buy the least expensive canvas print with grapes from the "Posters & Prints" category.

2. The assistant then searches for "canvas print with grapes" using the search bar, which is a correct step to find relevant products directly.
3. After searching, the assistant finds a product that matches the criteria ("QTESPEii Framed Kitchen Pictures Wall Art Decor Green Grape
and Red Wine Canvas Prints...") and adds it to the cart.

4. The assistant proceeds to checkout and completes the purchase.

5. Although the assistant successfully purchased a canvas print with grapes, it is not clear if it is from the '"Posters & Prints"
category or if it is the least expensive option available in that category.

EVALUATION: FAILURE

Figure 9: Permissive oracle evaluation, agreement bias, and SGV disagreement. Top: The agent searches for a product, clicks on the first
result, and completes the purchase. The trajectory is marked as successful by oracles, despite omitting steps that ensure the product is the least
expensive. Bottom: influenced by agreement bias, an MLLM verifier agrees with the oracle, producing ungrounded reasoning to justify its
judgment (red). SGV flags omitted steps and disagrees with the oracle (bold).
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For the item on this page which includes a Black Friday logo in the image, tell me the most

im ; . . g
imageg/ specific location given of the posting.

figures/figs_bias_4_extreme_permissive/0.pdf

stop [Shaw (Washington, D.C.)]

MLLM Verifier (no SGV)

REASONING: The objective is to find the most specific location of the item with a Black Friday logo. Looking at the screenshot, there are
two items with a Black Friday logo: item 36 and item 38. Both items are titled "RH Restoration Hardware". Clicking on either of these
items would lead to the product page where the location information would be available. The assistant correctly identified the item and
provided the location '"'Shaw (Washington, D.C.)" which is the most specific location given on the product page..

EVALUATION: SUCCESS

FEEDBACK: Great job! You successfully identified the correct item and extracted the most specific location.

Figure 10: Extreme example of agreement bias and permissive oracle. The dashed box highlights the target item
and is not provided at runtime. Top: The agent immediately returns a location in the first step of navigation,
despite the trajectory containing no information to justify the response. In this example, the location matches the
oracle’s requirements and the trajectory is marked as a success. Bottom: An MLLM verifier agrees with the
oracle, validating the trajectory even though, by construction, there is no evidence supporting the agent’s answer,
producing ungrounded reasoning (red) to justify its incorrect judgment.
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imagels/ Leave a comment in this post with the text as the number of buns in the image.

figures/figs_vl_fail_ 2/@ipmges/figs_vl_fail_2/fipmges/figs_vl_fail_2/2.png

type [14] [12] [0] click [16] stop

EVALUATION: SUCCESS
FEEDBACK: Great job! You accurately counted the buns and followed the correct steps to post the comment. Keep
up the good work!

Figure 11: Online feedback in VisualWebArena. False positive due to a classic failure in the
integration of visual perception and language (object counting).
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How many red keys are in the picture? Leave a comment replying to user “liverblow” with
imagels/ the following format: “It has <number of red key> $%@” (not including the double inverted
commas), replacing with the actual number of red key. Remember to use digits.

figures/figs_vl_fail

l_

1

Tiomges/figs_vl_fail_

L

1

Zignges/figs_vl_fail

click [60]

type [62] [It has 4 $%@]; click
[16]

stop — click [14]

figures/figs_vl_fail

l_

1

£iomges/figs_vl_fail

l_

1

Fipmges/figs_vl_fail

type [62] [It has 4 $%@]

EVALUATION: PARTIAL SUCCESS

click [16]

stop

FEEDBACK: Ensure all required fields are filled before posting a comment. Double-check the comment for
accuracy and completeness to avoid errors.

Post-feedback: stop — click

EVALUATION: SUCCESS

[14]

FEEDBACK: Great job! You accurately identified the number of red keys and posted the comment correctly. In
future tasks, consider explicitly verifying your comment before posting to ensure accuracy.

Figure 12: Online feedback in VisualWebArena. False positive on a complex task due to failures on
the integration of visual perception and language.
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G.3 ONLINE VERIFICATION - DIGITAL AGENTS

images/

image on the Reddit tab.

figures/figs_online_|fucuaees /fi@gpmnling

tab_focus [1] [Nintendo 64
click [6];

[71

type [5]
controller];
[30]; click

click

figures/figs_onlinsg

_|ficpaes /IFAD3. mmd 1ng

stop — go_back click [18]

EVALUATION: PARTIAL SUCCESS

__succes

__succes

Find me the cheapest controller from the classifieds site that is meant for the console in the

sf Igdresifigs_onling

click [32]

sf lgdephfigs_onling

stop

FEEDBACK: You correctly identified the console and searched for the controller. However, you did not sort the
search results by price to find the cheapest controller. Please go back to the search results page, sort the results by
price (lowest first), and then click on the listing for the cheapest Nintendo 64 controller. Remember, the objective is

to find the cheapest *controller*, not the cheapest console.
Post-feedback: stop — go_back

EVALUATION: SUCCESS

FEEDBACK: The assistant successfully completed the task by identifying the console, searching for the controller,

sorting by price, and navigating to the page of the cheapest item.

Figure 13: Online feedback in VisualWebArena. The agent receives valid feedback and correctly

modifies its approach to complete the task.
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Order the second thing in the top row. If the shipping is more than 7% of the total price,

imagefs . .. .
ges/ leave a 3 star review mentioning it, otherwise 5.

figures/figs_online|badKtigacksfdigs0 opigne | bagKtigacksfd&iys2 opddne | backtrack _fail/3.x

click [36] click [8] click [5]

figures/figs_online

\Pagkreadkifaibrdipaglbagkreadkigaibribipagbacktrack_fail/9.png

stop (max
steps

reached)

click [4] stop — click [24]

EVALUATION: PARTIAL SUCCESS

FEEDBACK: To fully accomplish the task, ensure to leave a review after the purchase. Calculate if the shipping
cost exceeds 7% of the total price and leave a 3-star review if it does, otherwise a 5-star review.

Post-feedback: stop — click [24]

Figure 14: Online feedback in VisualWebArena. The agent receives valid feedback during an incorrect
execution, but is unable to finish the task. (Partial trajectory shown due to space constraints.)
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imagels/ How many hours are on the engine of the most recently listed red boat?

figures/figs_stringent

Tiomges/figs_stringg

PNt

fipmges/figs_stringg

click [38]

EVALUATION: FAILURE

scroll [down]

stop [80] — go_back

FEEDBACK: The assistant did not attempt to search for “red boat™ as required by the objective. It navigated to the “Boats” category and
then scrolled down the page. The assistant should have used the search bar to find red boats. The assistant should go back to the home page
and use the search bar to search for “red boat”. After searching, the assistant should look for the most recently listed red boat and click on the

listing to find the engine hours.
Post-feedback: stop [80] — go_back

figures/figs_stringent

£iogmges/figs_stringg

PNt

Fipmges/figs_stringg

type [5] [red boat] [1]

EVALUATION: PARTIAL SUCCESS

stop [80] — click [38]

stop [80]

FEEDBACK: The assistant successfully searched for “red boat”. However, it stopped before clicking on any of the listings to find the engine
hours. The assistant needs to click on the most recently listed red boat and then find the engine hours on that page. The most recently listed

red boat is the one at the top of the list.
Post-feedback: stop [80] — click [38]

EVALUATION: SUCCESS

FEEDBACK: The assistant successfully navigated to the listing for the red boat and found the engine hours.

Figure 15: Online feedback in VisualWebArena. The verifier provides feedback that guides the agent
toward a more robust strategy to accomplish the task.
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imageg/ . . . .
IEE/ nia that is predominantly white

Navigate to the cheapest controller in the “Video gaming” category from Ohio or Pennsylva-

figures/figs_online|degrfddeftesygridgs_online|degfadeftesyidgs_online|degrade/2.png

click [56] click

[36]

click [17]

figures/figs_onlinefdggredé¢f3gpngnlii

neg

:fdggredéfdgpngnlit

ne_degrade/5.png
stop (max steps

reached)

click [19] click [25]

EVALUATION: PARTIAL SUCCESS

stop — go_back

FEEDBACK: You have successfully filtered by category, searched for "white controller”, and sorted by price in
Pennsylvania. However, you also need to check for the cheapest white controller in Ohio. Go back to the search
results page and filter by Ohio as well. Then, compare the cheapest results from both states to find the overall

cheapest one.
Post-feedback: stop — go_back

Figure 16: Online feedback in VisualWebArena. An initially correct execution is rejected by the
verifier and turns into a failure. (Partial trajectory shown due to space constraints.)
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G.4 ONLINE VERIFICATION - ROBOT MANIPULATION

images/robomimic_output.png

Figure 17: Verifier output for replanning and validation in the robomimic tool-hang task.
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